УДК 512.554.35

A. Petravchuk, K. Sysak DOI: https://doi.org/10.18523/2617-7080220196-10

SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF RANK ONE

Let \mathbb{K} be a field of characteristic zero, $A = \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring and $R = \mathbb{K}(x_1, \ldots, x_n)$ the field of rational functions in n variables over \mathbb{K} . The Lie algebra $W_n(\mathbb{K})$ of all \mathbb{K} -derivations on A is of great interest since its elements may be considered as vector fields on \mathbb{K}^n with polynomial coefficients. If L is a subalgebra of $W_n(\mathbb{K})$, then one can define the rank $\operatorname{rk}_A L$ of L over A as the dimension of the vector space RL over the field R. Finite dimensional (over \mathbb{K}) subalgebras of $W_n(\mathbb{K})$ of rank 1 over A were studied by the first author jointly with I. Arzhantsev and E. Makedonskiy. We study solvable subalgebras L of $W_n(\mathbb{K})$ with $\operatorname{rk}_A L = 1$, without restrictions on dimension over \mathbb{K} . Such Lie algebras are described in terms of Darboux polynomials.

Keywords: Lie algebra, solvable Lie algebra, derivation, Darboux polynomial, polynomial ring.

Introduction

Let \mathbb{K} be a field of characteristic zero and $A = \mathbb{K}[x_1, \ldots, x_n]$ the polynomial ring over \mathbb{K} . A \mathbb{K} -derivation D on A is a \mathbb{K} -linear operator $D: A \to A$ satisfying the Leibniz's rule: D(fg) = D(f)g + fD(g) for all $f, g \in A$. If D_1, D_2 are \mathbb{K} -derivations on A and $h \in A$, then $D_1 + D_2, hD_1$ and $[D_1, D_2] = D_1D_2 - D_2D_1$ are also derivations on A. The set $W_n(\mathbb{K})$ of all \mathbb{K} -derivations on the polynomial ring A is a Lie algebra over \mathbb{K} (with respect to the Lie bracket $[D_1, D_2]$) and simultaneously a free module over the polynomial ring A.

$$\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right\}$$

forms the standard basis of the A-module $W_n(\mathbb{K})$. The Lie algebra $W_n(\mathbb{K})$ is of great interest since its elements may be considered as vector fields on \mathbb{K}^n with polynomial coefficients (see, for example, [2–5]).

Let $R = \mathbb{K}(x_1, \ldots, x_n)$ be the field of rational functions in *n* variables over \mathbb{K} . Each derivation $D \in W_n(\mathbb{K})$ can be uniquely extended to a derivation on *R* by the rule:

$$D\left(\frac{a}{b}\right) = \frac{D(a)b - aD(b)}{b^2}.$$

If L is a subalgebra of the Lie algebra $W_n(\mathbb{K})$, then one can define the rank $\operatorname{rk}_A L$ of L over A as the dimension $\dim_R RL$ of the vector space RL consisting of all linear combinations of elements aD, where $a \in R, D \in L$. Note that RL is a Lie algebra over \mathbb{K} but not a Lie algebra over R in general.

Finite dimensional subalgebras of rank 1 over A of the Lie algebra $W_n(\mathbb{K})$ were described in [1]. (c) A. Petravchuk, K. Sysak, 2019 We study solvable subalgebras (without any restrictions on dimension) of rank 1 over A from the Lie algebra $W_n(\mathbb{K})$. The main result, Theorem 11, states that such a Lie algebra L is determined by a reduced derivation $D \in W_n(\mathbb{K})$ and elements λ , $a, b \in A$ such that

$$D(a) = \lambda a, D(b) = \lambda b + c$$
 for some $c \in \text{Ker } D$.

The set

$$VD, V \subseteq A_{\lambda}^{D},$$

forms an abelian ideal I of the Lie algebra L with the abelian factor algebra L/I. The obtained description can be useful for studying solvable Lie algebras of small rank over A.

We use standard notations. A nonzero polynomial $a \in A$ is called a Darboux polynomial for a derivation $D \in W_n(\mathbb{K})$ if $D(a) = \lambda a$ for some $\lambda \in A$. Such a polynomial λ is called a cofactor for D with respect to a. Some properties of Darboux polynomials and their applications in theory of differential equations can be found in [7; 8]. We denote by A_{λ}^{D} the set of all Darboux polynomials for $D \in W_n(\mathbb{K})$ with the same cofactor λ and of the zero polynomial. The set A_{λ}^{D} is obvioulsy a vector space over \mathbb{K} . If V is a subspace of A_{λ}^{D} , then we denote by VD the set of all derivations fD, $f \in$ $\in V$. This set is a vector space over the field \mathbb{K} . For polynomials $f, g \in A$, we denote by gcd(f,g) the greatest common divisor of f and g.

Abelian Lie algebras of rank one

Some auxiliary results are collected in the next three lemmas (see, for example [6], [8]). **Lemma 1.** Let D_1 , $D_2 \in W_n(\mathbb{K})$ and $a, b \in A$. Then

- 1. $[aD_1, bD_2] = ab[D_1, D_2] + aD_1(b)D_2 bD_2(a)D_1.$
- 2. If $a, b \in \text{Ker } D_1 \cap \text{Ker } D_2$, then $[aD_1, bD_2] = ab[D_1, D_2]$.
- 3. If $[D_1, D_2] = 0$, then $[aD_1, bD_2] = aD_1(b)D_2 bD_2(a)D_1$.

Lemma 2. Let *L* be an abelian subalgebra of rank one over *A* of the Lie algebra $W_n(\mathbb{K})$ and $aD, bD \in L$ for some nonzero $D \in W_n(\mathbb{K})$, $a, b \in$ $\in A, b \neq 0$. Then $D(\frac{a}{b}) = 0$. Moreover, if h = $= \gcd(a, b)$ and $a = a_1h, b = b_1h$ for some $a_1, b_1 \in$ $\in A$, then $[a_1D, b_1D] = 0$.

Proof. Using Lemma 1, one can get

$$[aD, bD] = (aD(b) - bD(a))D = 0,$$

since L is abelian and aD, $bD \in L$. Then aD(b) - bD(a) = 0. This implies

$$D\left(\frac{a}{b}\right) = \frac{D(a)b - aD(b)}{b^2} = 0.$$

If h = gcd(a, b) and $a = a_1h$, $b = b_1h$, then

$$D(\frac{a}{b}) = D(\frac{a_1}{b_1}) = 0$$

The last equation implies the equality $[a_1D, b_1D] = 0$. The proof is complete.

We need the following properties of Darboux polynomials.

Lemma 3. Let $D \in W_n(\mathbb{K})$. Then

 If f, g ∈ A are Darboux polynomials with cofactors λ and μ respectively, then fg is a Darboux polynomial for D with the cofactor λ + μ. Furthermore, if g ≠ 0, then

$$D\left(\frac{f}{g}\right) = (\lambda - \mu)\frac{f}{g}.$$

- 2. Every irreducible divisor of a Darboux polynomial for D is again a Darboux polynomial for D.
- 3. If f and $g \neq 0$ are coprime polynomials and D(f/g) = 0, then f and g are Darboux polynomials with the same cofactor.

Proof. See, for example, [7] and Propositions 2.2.1, 2.2.2 in [8].

Lemma 4. Let $D \in W_n(\mathbb{K})$. The set $A_0 \subseteq A$ of all Darboux polynomials for the derivation D with all possible cofactors is closed under multiplication. The set $A_1 \subseteq A$ of all polynomials that are not divisible by any non-constant Darboux polynomial for D has the same property. Moreover, the equality $A = A_0 \cdot A_1$ holds.

Proof. The multiplicative closure of the set A_0 follows from Lemma 3(1). Let $f, g \in A_1$ and suppose some Darboux polynomial h divides fg. Then by Lemma 3(3) we may assume without lost of generality that h is irreducible. Since A is a unique

factorization domain, we get that h divides either f or g, which is impossible. Thus $A_1A_1 \subseteq A_1$. The equality $A = A_0A_1$ follows from the multiplicative closeness of sets A_0 , A_1 and the fact that A is a UFD. The proof is complete.

Corollary 5. If $f \in A$, $f \notin \mathbb{K}$, then $f = f_0 f_1$ for the uniquely determined polynomials $f_0 \in A_0$ and $f_1 \in A_1$.

Definition. A derivation D of the polynomial ring A is called a *reduced derivation* if the condition $D = fD_1$ with $D_1 \in W_n(\mathbb{K})$ and $f \in A$ implies that f is a constant polynomial.

We will use the next statement, which can be found in [1].

Lemma 6. [1, Lemma2] For every submodule M of the A-module $W_n(\mathbb{K})$ of rank one over A there exist an ideal I of A and a reduced derivation $D_0 \in W_n(\mathbb{K})$ such that $M = ID_0$. The submodule M defines the derivation D_0 uniquely up to a nonzero scalar.

Theorem 7. Let L be an abelian subalgebra of rank one over A of the Lie algebra $W_n(\mathbb{K})$ and $\dim_{\mathbb{K}} L \geq 2$. Then there exist elements $D \in W_n(\mathbb{K})$ and $\lambda \in A$ such that L = VD for some \mathbb{K} -subspace V of $A_{\lambda}^D = \{a \in A \mid D(a) = \lambda a\}$. Conversely, every subalgebra of $W_n(\mathbb{K})$ of such a form is abelian of rank one over A.

Proof. Since $W_n(\mathbb{K})$ is a free A-module and a subalgebra $L \subseteq W_n(\mathbb{K})$ is of rank 1 over A, by Lemma 6 the subalgebra $AL \subseteq W_n(\mathbb{K})$ is of the the form AL = ID for an ideal I of the ring A and some reduced derivation $D \in W_n(\mathbb{K})$ (note that in general $D \notin L$). The inclusion $L \subseteq AL$ implies that every element of the subalgebra L is of the form aD for some $a \in A$ and $D \in W_n(\mathbb{K})$. It is easy to see that the set

$$U = \{a \in A | aD \in L\}$$

is a vector subspace (over \mathbb{K}) of the algebra A. Let us choose a basis $\{\bar{a}_i, i \in J\}$ of the vector space U over \mathbb{K} , where J is a set of indices, and denote by h the greatest common divisor of elements $\bar{a}_i \in$ $\in A, i \in J$. Then $\bar{a}_i = ha_i$ for some $a_i \in A, i \in J$, and U = hV, where V is a vector space over \mathbb{K} with a basis $\{a_i, i \in J\}$ such that $\gcd_{i \in J} a_i = 1$. Hence, we get

$$L = hV \cdot D.$$

Let us fix an arbitrary element $b \in V$ and show that b is a Darboux polynomial for the derivation D. By definition of the vector space V, we get $hbD \in L$. Then for each basic element $a_i, i \in J$, the relation $[hbD, ha_iD] = 0$ holds. We therefore have $D(b/a_i) = 0$ by Lemma 2. Denote $d_i = \text{gcd}(b, a_i)$, $i \in J$. Then

$$a_i = c_i d_i, \ b = b_i d_i$$

for some coprime polynomials \bar{b}_i and c_i , $i \in J$. Since $D(\bar{b}_i/c_i) = 0$, Lemma 3(3) implies that \bar{b}_i and c_i are Darboux polynomials for D. By Lemma 3(2), each irreducible divisor of the polynomial c_i , $i \in J$, is a Darboux polynomial for the derivation D.

Let us show that each irreducible divisor of the polynomial b is a divisor of at least one of polynomials \overline{b}_i , $i \in J$. Suppose to the contrary that there is an irreducible polynomial r such that $r \mid b$ and $r \nmid \overline{b}_i$ for all $i \in J$. But then $r \mid d_i$ for all $i \in J$. One can easily show that the last relations imply $r \mid a_i, i \in J$. The latter is impossible because $\gcd_{i \in J} a_i = 1$. The obtained contradiction shows that every divisor of the polynomial b is a divisor of at least one of polynomials \overline{b}_i , $i \in J$. Then by Lemma 3(2) each divisor of b is a Darboux polynomial for D and thus, b also is a Darboux polynomial for D.

Let now $b_1, b_2 \in V$ be arbitrary elements. Then

$$D(b_1) = \lambda_1 b_1, \ D(b_2) = \lambda_2 b_2$$

for some λ_1 , $\lambda_2 \in A$ as noted above. Since $[hb_1D, hb_2D] = 0$ we get $\lambda_1 = \lambda_2$ and then $b_1, b_2 \in A_{\lambda}^D$, where $\lambda = \lambda_1 = \lambda_2$. It follows from the last relation that $V \subseteq A_{\lambda}^D$. Denoting by D the derivation hD, we obtain L = VD.

The converse statement can be proven by a straightforward check.

Remark 1. It follows from the proof of Theorem 7 that under conditions of the theorem the Lie algebra L can be written in the form L = hVD for some reduced derivation $D \in W_n(\mathbb{K})$, a polynomial $h \in A$, and a subspace $V \subseteq A_{\lambda}^D$.

Nonabelian solvable Lie algebras of derivations of rank 1

Lemma 8. [6, Lemma 7] Let L be a solvable nonabelian subalgebra of rank 1 over A from the Lie algebra $W_n(\mathbb{K})$. Then the derived length s(L) = 2. **Lemma 9.** Let L be a solvable nonabelian subalgebra of $W_n(\mathbb{K})$ of rank 1 over A. Then L contains a maximal (with respect to inclusion) abelian ideal I of the form I = hVD for a derivation $D \in W_n(\mathbb{K})$ and a subspace $V \subseteq A_{\lambda}^D$, $\lambda \in A$. Moreover, each element from $L \setminus I$ is of the form bD, where $b \in$ $\in A$, and $[bD, ahD] = \mu ahD$ for some $\mu = \mu(b) \in$ \in Ker D.

Proof. By Lemma 8, the Lie algebra L is solvable with the derived length s(L) = 2. Let I be a maximal abelian ideal of L that contains the abelian ideal L' = [L, L]. Then I = hVD for a reduced derivation $D \in W_n(\mathbb{K})$ and a subspace $V \subseteq A_{\lambda}^D$ by Theorem 7. Since the set of Darboux polynomials for D is multiplicatively closed (Lemma 2), we may assume without lost of generality that h is not divisible by any non-constant Darboux polynomial for D.

Let $ahD \in I$, $a \in V$, $a \neq 0$, and $bD \in L \setminus I$, $b \in A$ be arbitrary elements. Then

$$[bD, ahD] = (bD(ah) - ahD(b))D \in I.$$

Since $a \in V$, we have $D(a) = \lambda a$ by definition of the set V. Therefore

$$bD(ah)-ahD(b)=\lambda abh+abD(h)-ahD(b)\in hV$$

and we obtain

$$\lambda abh + abD(h) - ahD(b) = \overline{a}h \tag{1}$$

for some polynomial $\overline{a} \in V$.

Since h is not divisible by any non-constant Darboux polynomial for D, it follows from the equation (1) that each divisor of a divides the polynomial \overline{a} . Then a divides \overline{a} and $\overline{a} = \mu a$ for some polynomial $\mu \in A$. We have $D(\overline{a}/a) = 0$, since $a, \ \overline{a} \in V \subseteq A_{\lambda}^{D}$. Therefore $\mu = \overline{a}/a \in \text{Ker } D$ and we get the relation

$$\lambda abh + abD(h) - ahD(b) = \mu ah.$$
(2)

The latter means that

$$[bD, ahD] = \mu ahD \tag{3}$$

for some $\mu \in \operatorname{Ker} D$.

Let us show that the element $\mu \in \text{Ker } D$ depends only on the element $bD \in L \setminus I$ and doesn't depend on $ahD \in I$.

Take arbitrary elements a_1hD , $a_2hD \in I$ and denote

$$[bD, a_1hD] = \mu_1 a_1hD, \tag{4}$$

$$[bD, a_2hD] = \mu_2 a_2hD \tag{5}$$

for $\mu_i \in \text{Ker } D$, i = 1, 2. We consider two cases.

Firstly, let $\operatorname{rk}_{\operatorname{Ker} D} I = 1$. Then for a_1hD , $a_2hD \in I$ there exist nonzero elements $\nu_1, \nu_2 \in \in \operatorname{Ker} D$ such that

$$\nu_1 a_1 h D + \nu_2 a_2 h D = 0. \tag{6}$$

Thus

$$a_1hD = -\frac{\nu_2}{\nu_1}a_2hD$$

and obviously $D(\nu_2/\nu_1) = 0$. Therefore

$$bD, a_1hD] = [bD, -\frac{\nu_2}{\nu_1}a_2hD] =$$
$$= -\frac{\nu_2}{\nu_1}[bD, a_2hD].$$
(7)

Using equalities (4), (5) and (7), we get

$$[bD, a_1hD] = -\frac{\nu_2}{\nu_1}\mu_2 a_2hD = \mu_1 a_1hD. \quad (8)$$

From the last relations we obtain

$$-(\nu_2/\nu_1)\mu_2a_2h = \mu_1a_1h$$

and thus

$$\mu_1 \nu_1 a_1 + \mu_2 \nu_2 a_2 = 0$$

By (6) $\nu_1 a_1 = -\nu_2 a_2$, so we have

$$\mu_2 \nu_2 a_2 - \mu_1 \nu_2 a_2 = 0,$$

and thus $\mu_1 = \mu_2$. Therefore,

$$[bD, ahD] = \mu \cdot ahD$$

for an arbitrary $a \in V$, and $\mu = \mu(b) \in \operatorname{Ker} D$ depends only on b.

Now, let $\operatorname{rk}_{\operatorname{Ker} D} I > 1$ and elements $a_1hD, a_2hD \in I$ be linearly independent over Ker D. We use notations (4), (5) from the above considered. From the relation (2) we get

$$\lambda a_1 b f + a_1 b D(h) - a_1 h D(b) = \mu_1 a_1 h, \lambda a_2 b f + a_2 b D(h) - a_2 h D(b) = \mu_2 a_2 h.$$
(9)

Furthermore, for an element $(a_1 + a_2)hD \in I$ we have

$$[bD, (a_1 + a_2)hD] = \nu(a_1 + a_2)hD \tag{10}$$

for some $\nu \in \text{Ker } D$. It follows from (9) that

$$[bD, (a_1 + a_2)hD] = (\mu_1 a_1 + \mu_2 a_2)hD.$$
(11)

Using (10) and (11), we obtain

$$\mu_1 a_1 + \mu_2 a_2 = \nu(a_1 + a_2).$$

Since a_1 , a_2 are linearly independent over Ker D, it follows from the last relation $\mu_1 = \mu_2 = \nu$. As in the case of $\operatorname{rk}_{\operatorname{Ker} D} I = 1$, it is easy to see that

$$[bD, ahD] = \mu ahD$$

for the same μ and an arbitrary element $ahD \in I$. The proof is complete.

Corollary 10. Under conditions of the lemma, if $\text{Ker } D = \mathbb{K}$, then ad bD acts as a scalar linear operator on the ideal I.

Theorem 11. Let L be a solvable nonabelian subalgebra of the Lie algebra $W_n(\mathbb{K})$ with $\operatorname{rk}_A L = 1$. Then L contains an abelian ideal I of the form I = VhD for a derivation $D \in W_n(\mathbb{K})$, a polynomial $h \in A$, a subspace $V \subseteq A_\lambda^D$ and each element from $L \setminus I$ is of the form bD for $b \in A$ such that $D(b) = \lambda b + c$ for some $c \in \operatorname{Ker} D$. Moreover, $[bD, ahD] = c \cdot ahD$ for an arbitrary $ahD \in I$.

Proof. In view of Lemma 8, L is solvable of derived length s(L) = 2. Therefore, L' = [L, L] is an abelian ideal. Let us denote by I any maximal

abelian ideal of L that contains L'. Then the centralizer $C_L(I) = I$ and L/I is an abelian quotient algebra. By Theorem 7 I = hVD for a reduced derivation $D \in W_n(\mathbb{K})$, a subspace $V \subseteq A_{\lambda}^D$, and a polynomial $h \in A$. Without lost of generality, we may assume that h is not divisible by any nonconstant Darboux polynomial for D.

Let us choose an arbitrary element $bD \in L \setminus I$. By Lemma 9,

$$[bD, ahD] = \mu ahD$$

for some $\mu = \mu(b) \in \text{Ker } D$. As in Lemma 9 it is easy to show that

$$\lambda bh + bD(h) - hD(b) = \mu h. \tag{12}$$

It follows from the equation (12) that $gcd(b,h) \neq 1$. Indeed, otherwise, D(h) is divisible by h and h is a Darboux polynomial for D, which contradicts our assumption. Thus, we may choose an element $b_0D \in L \setminus I$ with the highest degree $deg gcd(b_0, h)$. Denote $h_0 = gcd(b_0, h), h_0 \neq const$.

Let us show that b is divisible by h_0 and b/h_0 is coprime with h for an arbitrary element $bD \in L \setminus I$. By Lemma 9, we have

$$[bD, ahD] = \mu ahD, \quad [b_0D, ahD] = \mu_0 ahD$$

for an arbitrary $ahD \in I$ and some $\mu, \mu_0 \in \text{Ker } D$. It is obvious that

$$[\mu_0 bD - \mu b_0 D, ahD] = 0$$

for an arbitrary $ahD \in I$. Since $C_L(I) = I$, we get

$$\mu_0 bD - \mu b_0 D \in I,$$

that is

$$\mu_0 b - \mu b_0 = a_0 h \tag{13}$$

for some $a_0 \in V$. Since b_0 is divisible by $h_0 = = \gcd(b_0, h)$, it follows from (13) that $\mu_0 b$ is divisible by h_0 . Note that μ_0 and h_0 are coprime polynomials. Indeed, suppose to the contrary that $\bar{h}_0 = = \gcd(\mu_0, h_0)$ is a non-constant polynomial. Then \bar{h}_0 is a Darboux polynomial for D since \bar{h}_0 divides $\mu_0 \in \text{Ker } D$. But \bar{h}_0 divides h_0 and h_0 divides h, so \bar{h}_0 divides h, which contradicts our assumption on the element h.

Relations (13) and $gcd(\mu_0, h_0) = 1$ imply that b is divisible by h_0 . Hence, it is easy to see that b/h_0 is a coprime polynomial to h for an arbitrary $bD \in L \setminus I$.

Let us denote $\overline{b} = b/h_0$. Then $bD = \overline{b}h_0D$ for an arbitrary $bD \in L \setminus I$. We (for convenience) use the following notations

$$D_1 = h_0 D, \ h_1 = \frac{h}{h_0}, \ \lambda_1 = h_0 \lambda.$$

Then

$$I = hVD = h_1h_0VD = h_1V_1D_1,$$

where $V_1 \subseteq A_{\lambda_1}^{D_1}$. Moreover, each element from $L \setminus I$ may be presented in the form b_1D_1 for $b_1 \in A$ and $D_1 = h_0D$. Note that without lost of generality we may choose an element $h_1 = h/h_0$ such that h_1 is not divisible by any non-constant Darboux polynomial for D_1 . As in Lemma 9, one can show that for an arbitrary element $a_1h_1D_1 \in I$ there exists $\mu \in \operatorname{Ker} D_1$ (note that $\operatorname{Ker} D_1 = \operatorname{Ker} D$) such that

$$[b_1D_1, a_1h_1D_1] = \mu a_1h_1D_1.$$

Then the equality

$$\lambda_1 b_1 h_1 + b_1 D_1(h_1) - h_1 D_1(b_1) = \mu h_1 \qquad (14)$$

holds and this equality implies that $b_1D_1(h_1)$ is divisible by h_1 . By the proved above

$$gcd(b_1, h) = 1 = gcd(b_1, h_1).$$

These equalities imply that $D_1(h_1)$ is divisible by h_1 , whence h_1 is a Darboux polynomial for

- I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, "Finite-dimensional subalgebras in polynomial Lie algebras of rank one", Ukrainian Math. Journal. 63 (5), 827–832 (2011).
- A. Cohen and J. Draisma, "From Lie algebras of vector fields to algebraic group actions", Transformation Groups. (8), 51–68 (2003).
- A. González-López, N. Kamran, and P. J. Olver, "Lie algebras of differential operators in two complex variables", Amer. J. Math. 114, 1163–1185 (1992).
- A. González-López, N. Kamran, and P. J. Olver, "Lie algebras of vector fields in the real plane", Proc. London

 D_1 . The last contradicts our choice of h_1 and thus $h_1 = \text{const}$. Then it follows from (14) that $\lambda_1 b_1 - D(b_1) = \mu$ for some $\mu \in \text{Ker } D_1$, that is

$$D(b_1) = \lambda_1 b_1 + \mu, \ \mu \in \operatorname{Ker} D_1.$$

Replacing notations, we obtain the statement of the theorem.

Example 1. Let *I* and *B* be vector spaces of derivations of $W_2(\mathbb{K})$ of the following forms:

$$I = \mathbb{K} \langle x_2 \frac{\partial}{\partial x_1}, x_2^2 \frac{\partial}{\partial x_1}, \dots x_2^m \frac{\partial}{\partial x_1}, \dots \rangle$$
$$B = \mathbb{K} \langle x_2 x_1 \frac{\partial}{\partial x_1}, x_2^2 x_1 \frac{\partial}{\partial x_1}, \dots x_2^m x_1 \frac{\partial}{\partial x_1}, \dots \rangle$$

Then one can easily check that I and B are abelian subalgebras of $W_2(\mathbb{K})$ and $[B, I] \subseteq I$. Thus, L = B + I is a metabelian Lie algebra of rank 1 over A. This Lie algebra is of type described in Theorem 11 when we put $D = \frac{\partial}{\partial x_1}, \lambda = 0, h = 1$.

References

Math. Soc. 64 (3), 339–368 (1992).

- 5. S. Lie, *Theorie der Transformationsgruppen*, Vol. 3 (Teubner, Leipzig, 1893).
- Ie. O. Makedonskyi and A. P. Petravchuk, "On nilpotent and solvable Lie algebras of derivations", Journal of Algebra. 401, 245–257 (2014).
- J. M. Ollagnier, "Algebraic closure of a rational function", Qualitative Theory of Dynamical Systems. 5 (2), 285–297 (2004).
- A. Nowicki, Polynomial Derivations and their Rings of Constants (Uniwersytet Mikolaja Kopernika, Torun, 1994).

Петравчук А. П., Сисак К. Я.

РОЗВ'ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ РАНГУ ОДИН

Нехай \mathbb{K} – довільне поле характеристики нуль, $A = \mathbb{K}[x_1, \ldots, x_n]$ – кільце многочленів та $R = \mathbb{K}(x_1, \ldots, x_n)$ – поле раціональних функцій від n змінних над \mathbb{K} . Алгебра Лі $W_n(\mathbb{K})$ всіх \mathbb{K} диференціювань кільця A становить великий інтерес, оскільки її елементи можуть розглядатися як векторні поля на \mathbb{K}^n з поліноміальними коефіцієнтами. Якщо L підалгебра із $W_n(\mathbb{K})$, то можна визначити ранг rk_AL підалгебри L над кільцем A як розмірність векторного простору RL над полем R. Скінченновимірні (над \mathbb{K}) підалгебри рангу 1 над A вивчалися першим автором разом з І. Аржанцевим та \mathbb{C} . Македонським. Ми вивчаємо розв'язні підалгебри L алгебри Лі $W_n(\mathbb{K})$ з rk_AL = 1, без обмежень на розмірність над \mathbb{K} . Дано опис таких алгебр Лі в термінах многочленів Дарбу.

Ключові слова: алгебра Лі, розв'язна алгебра Лі, диференціювання, многочлен Дарбу, кільце многочленів.

Матеріал надійшов 20.07.2019