УДК 512.554.35

A. Petravchuk, K. Sysak
DOI: https://doi.org/10.18523/2617-7080220196-10

SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF RANK ONE

Abstract

Let \mathbb{K} be a field of characteristic zero, $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring and $R=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ the field of rational functions in n variables over \mathbb{K}. The Lie algebra $W_{n}(\mathbb{K})$ of all \mathbb{K}-derivations on A is of great interest since its elements may be considered as vector fields on \mathbb{K}^{n} with polynomial coefficients. If L is a subalgebra of $W_{n}(\mathbb{K})$, then one can define the rank $\mathrm{rk}_{A} L$ of L over A as the dimension of the vector space $R L$ over the field R. Finite dimensional (over \mathbb{K}) subalgebras of $W_{n}(\mathbb{K})$ of rank 1 over A were studied by the first author jointly with I. Arzhantsev and E. Makedonskiy. We study solvable subalgebras L of $W_{n}(\mathbb{K})$ with $\mathrm{rk}_{A} L=1$, without restrictions on dimension over \mathbb{K}. Such Lie algebras are described in terms of Darboux polynomials.

Keywords: Lie algebra, solvable Lie algebra, derivation, Darboux polynomial, polynomial ring.

Introduction

Let \mathbb{K} be a field of characteristic zero and $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over \mathbb{K}. A \mathbb{K}-derivation D on A is a \mathbb{K}-linear operator $D: A \rightarrow A$ satisfying the Leibniz's rule: $D(f g)=$ $=D(f) g+f D(g)$ for all $f, g \in A$. If D_{1}, D_{2} are \mathbb{K}-derivations on A and $h \in A$, then $D_{1}+D_{2}, h D_{1}$ and $\left[D_{1}, D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}$ are also derivations on A. The set $W_{n}(\mathbb{K})$ of all \mathbb{K}-derivations on the polynomial ring A is a Lie algebra over \mathbb{K} (with respect to the Lie bracket $\left[D_{1}, D_{2}\right]$) and simultaneously a free module over the polynomial ring A. The set of partial derivations

$$
\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}
$$

forms the standard basis of the A-module $W_{n}(\mathbb{K})$. The Lie algebra $W_{n}(\mathbb{K})$ is of great interest since its elements may be considered as vector fields on \mathbb{K}^{n} with polynomial coefficients (see, for example, [2-5]).

Let $R=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ be the field of rational functions in n variables over \mathbb{K}. Each derivation $D \in W_{n}(\mathbb{K})$ can be uniquely extended to a derivation on R by the rule:

$$
D\left(\frac{a}{b}\right)=\frac{D(a) b-a D(b)}{b^{2}} .
$$

If L is a subalgebra of the Lie algebra $W_{n}(\mathbb{K})$, then one can define the rank $\mathrm{rk}_{A} L$ of L over A as the dimension $\operatorname{dim}_{R} R L$ of the vector space $R L$ consisting of all linear combinations of elements $a D$, where $a \in R, D \in L$. Note that $R L$ is a Lie algebra over \mathbb{K} but not a Lie algebra over R in general.

Finite dimensional subalgebras of rank 1 over A of the Lie algebra $W_{n}(\mathbb{K})$ were described in [1].

We study solvable subalgebras (without any restrictions on dimension) of rank 1 over A from the Lie algebra $W_{n}(\mathbb{K})$. The main result, Theorem 11, states that such a Lie algebra L is determined by a reduced derivation $D \in W_{n}(\mathbb{K})$ and elements $\lambda, a, b \in A$ such that

$$
D(a)=\lambda a, D(b)=\lambda b+c \text { for some } c \in \operatorname{Ker} D
$$

The set

$$
V D, V \subseteq A_{\lambda}^{D}
$$

forms an abelian ideal I of the Lie algebra L with the abelian factor algebra L / I. The obtained description can be useful for studying solvable Lie algebras of small rank over A.

We use standard notations. A nonzero polynomial $a \in A$ is called a Darboux polynomial for a derivation $D \in W_{n}(\mathbb{K})$ if $D(a)=\lambda a$ for some $\lambda \in A$. Such a polynomial λ is called a cofactor for D with respect to a. Some properties of Darboux polynomials and their applications in theory of differential equations can be found in [7; 8]. We denote by A_{λ}^{D} the set of all Darboux polynomials for $D \in W_{n}(\mathbb{K})$ with the same cofactor λ and of the zero polynomial. The set A_{λ}^{D} is obvioulsy a vector space over \mathbb{K}. If V is a subspace of A_{λ}^{D}, then we denote by $V D$ the set of all derivations $f D, f \in$ $\in V$. This set is a vector space over the field \mathbb{K}. For polynomials $f, g \in A$, we denote by $\operatorname{gcd}(f, g)$ the greatest common divisor of f and g.

Abelian Lie algebras of rank one

Some auxiliary results are collected in the next three lemmas (see, for example [6], [8]).
Lemma 1. Let $D_{1}, D_{2} \in W_{n}(\mathbb{K})$ and $a, b \in A$. Then

1. $\left[a D_{1}, b D_{2}\right]=a b\left[D_{1}, D_{2}\right]+a D_{1}(b) D_{2}-$ $b D_{2}(a) D_{1}$.
2. If $a, b \in \operatorname{Ker} D_{1} \cap \operatorname{Ker} D_{2}$, then $\left[a D_{1}, b D_{2}\right]=$ $=a b\left[D_{1}, D_{2}\right]$.
3. If $\left[D_{1}, D_{2}\right]=0$, then $\left[a D_{1}, b D_{2}\right]=$ $=a D_{1}(b) D_{2}-b D_{2}(a) D_{1}$.
Lemma 2. Let L be an abelian subalgebra of rank one over A of the Lie algebra $W_{n}(\mathbb{K})$ and $a D, b D \in L$ for some nonzero $D \in W_{n}(\mathbb{K}), a, b \in$ $\in A, b \neq 0$. Then $D\left(\frac{a}{b}\right)=0$. Moreover, if $h=$ $=\operatorname{gcd}(a, b)$ and $a=a_{1} h, b=b_{1} h$ for some $a_{1}, b_{1} \in$ $\in A$, then $\left[a_{1} D, b_{1} D\right]=0$.
Proof. Using Lemma 1 , one can get

$$
[a D, b D]=(a D(b)-b D(a)) D=0
$$

since L is abelian and $a D, b D \in L$. Then $a D(b)-b D(a)=0$. This implies

$$
D\left(\frac{a}{b}\right)=\frac{D(a) b-a D(b)}{b^{2}}=0
$$

If $h=\operatorname{gcd}(a, b)$ and $a=a_{1} h, b=b_{1} h$, then

$$
D\left(\frac{a}{b}\right)=D\left(\frac{a_{1}}{b_{1}}\right)=0
$$

The last equation implies the equality $\left[a_{1} D, b_{1} D\right]=0$. The proof is complete.

We need the following properties of Darboux polynomials.
Lemma 3. Let $D \in W_{n}(\mathbb{K})$. Then

1. If $f, g \in A$ are Darboux polynomials with cofactors λ and μ respectively, then $f g$ is a Darboux polynomial for D with the cofactor $\lambda+\mu$. Furthermore, if $g \neq 0$, then

$$
D\left(\frac{f}{g}\right)=(\lambda-\mu) \frac{f}{g}
$$

2. Every irreducible divisor of a Darboux polynomial for D is again a Darboux polynomial for D.
3. If f and $g \neq 0$ are coprime polynomials and $D(f / g)=0$, then f and g are Darboux polynomials with the same cofactor.
Proof. See, for example, [7] and Propositions 2.2.1, 2.2.2 in [8].

Lemma 4. Let $D \in W_{n}(\mathbb{K})$. The set $A_{0} \subseteq A$ of all Darboux polynomials for the derivation D with all possible cofactors is closed under multiplication. The set $A_{1} \subseteq A$ of all polynomials that are not divisible by any non-constant Darboux polynomial for D has the same property. Moreover, the equality $A=A_{0} \cdot A_{1}$ holds.
Proof. The multiplicative closure of the set A_{0} follows from Lemma 3(1). Let $f, g \in A_{1}$ and suppose some Darboux polynomial h divides $f g$. Then by Lemma 3(3) we may assume without lost of generality that h is irreducible. Since A is a unique
factorization domain, we get that h divides either f or g, which is impossible. Thus $A_{1} A_{1} \subseteq A_{1}$. The equality $A=A_{0} A_{1}$ follows from the multiplicative closeness of sets A_{0}, A_{1} and the fact that A is a UFD. The proof is complete.
Corollary 5. If $f \in A, f \notin \mathbb{K}$, then $f=f_{0} f_{1}$ for the uniquely determined polynomials $f_{0} \in A_{0}$ and $f_{1} \in A_{1}$.
Definition. A derivation D of the polynomial ring A is called a reduced derivation if the condition $D=f D_{1}$ with $D_{1} \in W_{n}(\mathbb{K})$ and $f \in A$ implies that f is a constant polynomial.

We will use the next statement, which can be found in [1].
Lemma 6. [1, Lemma2] For every submodule M of the A-module $W_{n}(\mathbb{K})$ of rank one over A there exist an ideal I of A and a reduced derivation $D_{0} \in$ $\in W_{n}(\mathbb{K})$ such that $M=I D_{0}$. The submodule M defines the derivation D_{0} uniquely up to a nonzero scalar.
Theorem 7. Let L be an abelian subalgebra of rank one over A of the Lie algebra $W_{n}(\mathbb{K})$ and $\operatorname{dim}_{\mathbb{K}} L \geq 2$. Then there exist elements $D \in W_{n}(\mathbb{K})$ and $\lambda \in A$ such that $L=V D$ for some \mathbb{K}-subspace V of $A_{\lambda}^{D}=\{a \in A \mid D(a)=\lambda a\}$. Conversely, every subalgebra of $W_{n}(\mathbb{K})$ of such a form is abelian of rank one over A.
Proof. Since $W_{n}(\mathbb{K})$ is a free A-module and a subalgebra $L \subseteq W_{n}(\mathbb{K})$ is of rank 1 over A, by Lemma 6 the subalgebra $A L \subseteq W_{n}(\mathbb{K})$ is of the the form $A L=I D$ for an ideal I of the ring A and some reduced derivation $D \in W_{n}(\mathbb{K})$ (note that in general $D \notin L)$. The inclusion $L \subseteq A L$ implies that every element of the subalgebra L is of the form $a D$ for some $a \in A$ and $D \in W_{n}(\mathbb{K})$. It is easy to see that the set

$$
U=\{a \in A \mid a D \in L\}
$$

is a vector subspace (over \mathbb{K}) of the algebra A. Let us choose a basis $\left\{\bar{a}_{i}, i \in J\right\}$ of the vector space U over \mathbb{K}, where J is a set of indices, and denote by h the greatest common divisor of elements $\bar{a}_{i} \in$ $\in A, i \in J$. Then $\bar{a}_{i}=h a_{i}$ for some $a_{i} \in A, i \in J$, and $U=h V$, where V is a vector space over \mathbb{K} with a basis $\left\{a_{i}, i \in J\right\}$ such that $\operatorname{gcd}_{i \in J} a_{i}=1$. Hence, we get

$$
L=h V \cdot D
$$

Let us fix an arbitrary element $b \in V$ and show that b is a Darboux polynomial for the derivation D. By definition of the vector space V, we get $h b D \in L$. Then for each basic element $a_{i}, i \in J$, the relation $\left[h b D, h a_{i} D\right]=0$ holds. We therefore have $D\left(b / a_{i}\right)=0$ by Lemma 2. Denote $d_{i}=\operatorname{gcd}\left(b, a_{i}\right)$, $i \in J$. Then

$$
a_{i}=c_{i} d_{i}, b=\bar{b}_{i} d_{i}
$$

for some coprime polynomials \bar{b}_{i} and $c_{i}, i \in J$. Since $D\left(\bar{b}_{i} / c_{i}\right)=0$, Lemma 3(3) implies that \bar{b}_{i} and c_{i} are Darboux polynomials for D. By Lemma 3(2), each irreducible divisor of the polynomial $c_{i}, i \in J$, is a Darboux polynomial for the derivation D.

Let us show that each irreducible divisor of the polynomial b is a divisor of at least one of polynomials $\bar{b}_{i}, i \in J$. Suppose to the contrary that there is an irreducible polynomial r such that $r \mid b$ and $r \nmid \bar{b}_{i}$ for all $i \in J$. But then $r \mid d_{i}$ for all $i \in J$. One can easily show that the last relations imply $r \mid a_{i}, i \in J$. The latter is impossible because $\operatorname{gcd}_{i \in J} a_{i}=1$. The obtained contradiction shows that every divisor of the polynomial b is a divisor of at least one of polynomials $\bar{b}_{i}, i \in J$. Then by Lemma 3(2) each divisor of b is a Darboux polynomial for D and thus, b also is a Darboux polynomial for D.

Let now $b_{1}, b_{2} \in V$ be arbitrary elements. Then

$$
D\left(b_{1}\right)=\lambda_{1} b_{1}, D\left(b_{2}\right)=\lambda_{2} b_{2}
$$

for some $\lambda_{1}, \lambda_{2} \in A$ as noted above. Since $\left[h b_{1} D, h b_{2} D\right]=0$ we get $\lambda_{1}=\lambda_{2}$ and then $b_{1}, b_{2} \in$ $\in A_{\lambda}^{D}$, where $\lambda=\lambda_{1}=\lambda_{2}$. It follows from the last relation that $V \subseteq A_{\lambda}^{D}$. Denoting by D the derivation $h D$, we obtain $L=V D$.

The converse statement can be proven by a straightforward check.

Remark 1. It follows from the proof of Theorem 7 that under conditions of the theorem the Lie algebra L can be written in the form $L=h V D$ for some reduced derivation $D \in W_{n}(\mathbb{K})$, a polynomial $h \in A$, and a subspace $V \subseteq A_{\lambda}^{D}$.

Nonabelian solvable Lie algebras of derivations of rank 1

Lemma 8. [6, Lemma 7] Let L be a solvable nonabelian subalgebra of rank 1 over A from the Lie algebra $W_{n}(\mathbb{K})$. Then the derived length $s(L)=2$. Lemma 9. Let L be a solvable nonabelian subalgebra of $W_{n}(\mathbb{K})$ of rank 1 over A. Then L contains a maximal (with respect to inclusion) abelian ideal I of the form $I=h V D$ for a derivation $D \in W_{n}(\mathbb{K})$ and a subspace $V \subseteq A_{\lambda}^{D}, \lambda \in A$. Moreover, each element from $L \backslash I$ is of the form $b D$, where $b \in$ $\in A$, and $[b D, a h D]=\mu a h D$ for some $\mu=\mu(b) \in$ $\in \operatorname{Ker} D$.
Proof. By Lemma 8, the Lie algebra L is solvable with the derived length $s(L)=2$. Let I be a maximal abelian ideal of L that contains the abelian ideal $L^{\prime}=[L, L]$. Then $I=h V D$ for a reduced derivation $D \in W_{n}(\mathbb{K})$ and a subspace $V \subseteq A_{\lambda}^{D}$ by Theorem 7. Since the set of Darboux polynomials for D is multiplicatively closed (Lemma 2), we
may assume without lost of generality that h is not divisible by any non-constant Darboux polynomial for D.

Let $a h D \in I, a \in V, a \neq 0$, and $b D \in L \backslash I, b \in$ $\in A$ be arbitrary elements. Then

$$
[b D, a h D]=(b D(a h)-a h D(b)) D \in I .
$$

Since $a \in V$, we have $D(a)=\lambda a$ by definition of the set V. Therefore
$b D(a h)-a h D(b)=\lambda a b h+a b D(h)-a h D(b) \in h V$
and we obtain

$$
\begin{equation*}
\lambda a b h+a b D(h)-a h D(b)=\bar{a} h \tag{1}
\end{equation*}
$$

for some polynomial $\bar{a} \in V$.
Since h is not divisible by any non-constant Darboux polynomial for D, it follows from the equation (1) that each divisor of a divides the polynomial \bar{a}. Then a divides \bar{a} and $\bar{a}=\mu a$ for some polynomial $\mu \in A$. We have $D(\bar{a} / a)=0$, since $a, \bar{a} \in V \subseteq A_{\lambda}^{D}$. Therefore $\mu=\bar{a} / a \in \operatorname{Ker} D$ and we get the relation

$$
\begin{equation*}
\lambda a b h+a b D(h)-a h D(b)=\mu a h . \tag{2}
\end{equation*}
$$

The latter means that

$$
\begin{equation*}
[b D, a h D]=\mu a h D \tag{3}
\end{equation*}
$$

for some $\mu \in \operatorname{Ker} D$.
Let us show that the element $\mu \in \operatorname{Ker} D$ depends only on the element $b D \in L \backslash I$ and doesn't depend on $a h D \in I$.

Take arbitrary elements $a_{1} h D, a_{2} h D \in I$ and denote

$$
\begin{gather*}
{\left[b D, a_{1} h D\right]=\mu_{1} a_{1} h D,} \tag{4}\\
{\left[b D, a_{2} h D\right]=\mu_{2} a_{2} h D} \tag{5}
\end{gather*}
$$

for $\mu_{i} \in \operatorname{Ker} D, i=1,2$. We consider two cases.
Firstly, let $\mathrm{rk}_{\text {Ker } D} I=1$. Then for $a_{1} h D$, $a_{2} h D \in I$ there exist nonzero elements $\nu_{1}, \nu_{2} \in$ $\in \operatorname{Ker} D$ such that

$$
\begin{equation*}
\nu_{1} a_{1} h D+\nu_{2} a_{2} h D=0 . \tag{6}
\end{equation*}
$$

Thus

$$
a_{1} h D=-\frac{\nu_{2}}{\nu_{1}} a_{2} h D
$$

and obviously $D\left(\nu_{2} / \nu_{1}\right)=0$. Therefore

$$
\begin{gather*}
{\left[b D, a_{1} h D\right]=\left[b D,-\frac{\nu_{2}}{\nu_{1}} a_{2} h D\right]=} \\
=-\frac{\nu_{2}}{\nu_{1}}\left[b D, a_{2} h D\right] . \tag{7}
\end{gather*}
$$

Using equalities (4), (5) and (7), we get

$$
\begin{equation*}
\left[b D, a_{1} h D\right]=-\frac{\nu_{2}}{\nu_{1}} \mu_{2} a_{2} h D=\mu_{1} a_{1} h D . \tag{8}
\end{equation*}
$$

From the last relations we obtain

$$
-\left(\nu_{2} / \nu_{1}\right) \mu_{2} a_{2} h=\mu_{1} a_{1} h
$$

and thus

$$
\mu_{1} \nu_{1} a_{1}+\mu_{2} \nu_{2} a_{2}=0
$$

$\operatorname{By}(6) \nu_{1} a_{1}=-\nu_{2} a_{2}$, so we have

$$
\mu_{2} \nu_{2} a_{2}-\mu_{1} \nu_{2} a_{2}=0
$$

and thus $\mu_{1}=\mu_{2}$. Therefore,

$$
[b D, a h D]=\mu \cdot a h D
$$

for an arbitrary $a \in V$, and $\mu=\mu(b) \in \operatorname{Ker} D$ depends only on b.

Now, let $\operatorname{rk}_{\text {Ker } D} I>1$ and elements $a_{1} h D, a_{2} h D \in I$ be linearly independent over Ker D. We use notations (4), (5) from the above considered. From the relation (2) we get

$$
\begin{align*}
& \lambda a_{1} b f+a_{1} b D(h)-a_{1} h D(b)=\mu_{1} a_{1} h, \\
& \lambda a_{2} b f+a_{2} b D(h)-a_{2} h D(b)=\mu_{2} a_{2} h . \tag{9}
\end{align*}
$$

Furthermore, for an element $\left(a_{1}+a_{2}\right) h D \in I$ we have

$$
\begin{equation*}
\left[b D,\left(a_{1}+a_{2}\right) h D\right]=\nu\left(a_{1}+a_{2}\right) h D \tag{10}
\end{equation*}
$$

for some $\nu \in \operatorname{Ker} D$. It follows from (9) that

$$
\begin{equation*}
\left[b D,\left(a_{1}+a_{2}\right) h D\right]=\left(\mu_{1} a_{1}+\mu_{2} a_{2}\right) h D . \tag{11}
\end{equation*}
$$

Using (10) and (11), we obtain

$$
\mu_{1} a_{1}+\mu_{2} a_{2}=\nu\left(a_{1}+a_{2}\right) .
$$

Since a_{1}, a_{2} are linearly independent over $\operatorname{Ker} D$, it follows from the last relation $\mu_{1}=\mu_{2}=\nu$. As in the case of $\mathrm{rk}_{\mathrm{Ker} D} I=1$, it is easy to see that

$$
[b D, a h D]=\mu a h D
$$

for the same μ and an arbitrary element $a h D \in I$. The proof is complete.
Corollary 10. Under conditions of the lemma, if Ker $D=\mathbb{K}$, then $\operatorname{ad} b D$ acts as a scalar linear operator on the ideal I.
Theorem 11. Let L be a solvable nonabelian subalgebra of the Lie algebra $W_{n}(\mathbb{K})$ with $\mathrm{rk}_{A} L=1$. Then L contains an abelian ideal I of the form $I=V h D$ for a derivation $D \in W_{n}(\mathbb{K})$, a polynomial $h \in A$, a subspace $V \subseteq A_{\lambda}^{D}$ and each element from $L \backslash I$ is of the form $b D$ for $b \in A$ such that $D(b)=\lambda b+c$ for some $c \in \operatorname{Ker} D$. Moreover, $[b D, a h D]=c \cdot a h D$ for an arbitrary $a h D \in I$. Proof. In view of Lemma 8, L is solvable of derived length $s(L)=2$. Therefore, $L^{\prime}=[L, L]$ is an abelian ideal. Let us denote by I any maximal
abelian ideal of L that contains L^{\prime}. Then the centralizer $C_{L}(I)=I$ and L / I is an abelian quotient algebra. By Theorem $7 I=h V D$ for a reduced derivation $D \in W_{n}(\mathbb{K})$, a subspace $V \subseteq A_{\lambda}^{D}$, and a polynomial $h \in A$. Without lost of generality, we may assume that h is not divisible by any nonconstant Darboux polynomial for D.

Let us choose an arbitrary element $b D \in L \backslash I$. By Lemma 9,

$$
[b D, a h D]=\mu a h D
$$

for some $\mu=\mu(b) \in \operatorname{Ker} D$. As in Lemma 9 it is easy to show that

$$
\begin{equation*}
\lambda b h+b D(h)-h D(b)=\mu h . \tag{12}
\end{equation*}
$$

It follows from the equation (12) that $\operatorname{gcd}(b, h) \neq 1$. Indeed, otherwise, $D(h)$ is divisible by h and h is a Darboux polynomial for D, which contradicts our assumption. Thus, we may choose an element $b_{0} D \in L \backslash I$ with the highest degree $\operatorname{deg} \operatorname{gcd}\left(b_{0}, h\right)$. Denote $h_{0}=\operatorname{gcd}\left(b_{0}, h\right), h_{0} \neq$ const .

Let us show that b is divisible by h_{0} and b / h_{0} is coprime with h for an arbitrary element $b D \in L \backslash I$. By Lemma 9, we have

$$
[b D, a h D]=\mu a h D, \quad\left[b_{0} D, a h D\right]=\mu_{0} a h D
$$

for an arbitrary $a h D \in I$ and some $\mu, \mu_{0} \in \operatorname{Ker} D$. It is obvious that

$$
\left[\mu_{0} b D-\mu b_{0} D, a h D\right]=0
$$

for an arbitrary $a h D \in I$. Since $C_{L}(I)=I$, we get

$$
\mu_{0} b D-\mu b_{0} D \in I
$$

that is

$$
\begin{equation*}
\mu_{0} b-\mu b_{0}=a_{0} h \tag{13}
\end{equation*}
$$

for some $a_{0} \in V$. Since b_{0} is divisible by $h_{0}=$ $=\operatorname{gcd}\left(b_{0}, h\right)$, it follows from (13) that $\mu_{0} b$ is divisible by h_{0}. Note that μ_{0} and h_{0} are coprime polynomials. Indeed, suppose to the contrary that $\bar{h}_{0}=$ $=\operatorname{gcd}\left(\mu_{0}, h_{0}\right)$ is a non-constant polynomial. Then \bar{h}_{0} is a Darboux polynomial for D since \bar{h}_{0} divides $\mu_{0} \in \operatorname{Ker} D$. But \bar{h}_{0} divides h_{0} and h_{0} divides h, so \bar{h}_{0} divides h, which contradicts our assumption on the element h.

Relations (13) and $\operatorname{gcd}\left(\mu_{0}, h_{0}\right)=1$ imply that b is divisible by h_{0}. Hence, it is easy to see that b / h_{0} is a coprime polynomial to h for an arbitrary $b D \in L \backslash I$.

Let us denote $\bar{b}=b / h_{0}$. Then $b D=\bar{b} h_{0} D$ for an arbitrary $b D \in L \backslash I$. We (for convenience) use the following notations

$$
D_{1}=h_{0} D, h_{1}=\frac{h}{h_{0}}, \lambda_{1}=h_{0} \lambda .
$$

Then

$$
I=h V D=h_{1} h_{0} V D=h_{1} V_{1} D_{1},
$$

where $V_{1} \subseteq A_{\lambda_{1}}^{D_{1}}$. Moreover, each element from $L \backslash I$ may be presented in the form $b_{1} D_{1}$ for $b_{1} \in A$ and $D_{1}=h_{0} D$. Note that without lost of generality we may choose an element $h_{1}=h / h_{0}$ such that h_{1} is not divisible by any non-constant Darboux polynomial for D_{1}. As in Lemma 9, one can show that for an arbitrary element $a_{1} h_{1} D_{1} \in I$ there exists $\mu \in \operatorname{Ker} D_{1}\left(\right.$ note that $\left.\operatorname{Ker} D_{1}=\operatorname{Ker} D\right)$ such that

$$
\left[b_{1} D_{1}, a_{1} h_{1} D_{1}\right]=\mu a_{1} h_{1} D_{1} .
$$

Then the equality

$$
\begin{equation*}
\lambda_{1} b_{1} h_{1}+b_{1} D_{1}\left(h_{1}\right)-h_{1} D_{1}\left(b_{1}\right)=\mu h_{1} \tag{14}
\end{equation*}
$$

holds and this equality implies that $b_{1} D_{1}\left(h_{1}\right)$ is divisible by h_{1}. By the proved above

$$
\operatorname{gcd}\left(b_{1}, h\right)=1=\operatorname{gcd}\left(b_{1}, h_{1}\right)
$$

These equalities imply that $D_{1}\left(h_{1}\right)$ is divisible by h_{1}, whence h_{1} is a Darboux polynomial for
D_{1}. The last contradicts our choice of h_{1} and thus $h_{1}=$ const. Then it follows from (14) that $\lambda_{1} b_{1}-D\left(b_{1}\right)=\mu$ for some $\mu \in \operatorname{Ker} D_{1}$, that is

$$
D\left(b_{1}\right)=\lambda_{1} b_{1}+\mu, \mu \in \operatorname{Ker} D_{1}
$$

Replacing notations, we obtain the statement of the theorem.
Example 1. Let I and B be vector spaces of derivations of $W_{2}(\mathbb{K})$ of the following forms:

$$
\begin{aligned}
& I=\mathbb{K}\left\langle x_{2} \frac{\partial}{\partial x_{1}}, x_{2}{ }^{2} \frac{\partial}{\partial x_{1}}, \ldots x_{2}{ }^{m} \frac{\partial}{\partial x_{1}}, \ldots\right\rangle \\
& B=\mathbb{K}\left\langle x_{2} x_{1} \frac{\partial}{\partial x_{1}}, x_{2}{ }^{2} x_{1} \frac{\partial}{\partial x_{1}}, \ldots x_{2}{ }^{m} x_{1} \frac{\partial}{\partial x_{1}}, \ldots\right\rangle
\end{aligned}
$$

Then one can easily check that I and B are abelian subalgebras of $W_{2}(\mathbb{K})$ and $[B, I] \subseteq I$. Thus, $L=B+I$ is a metabelian Lie algebra of rank 1 over A. This Lie algebra is of type described in Theorem 11 when we put $D=\frac{\partial}{\partial x_{1}}, \lambda=0, h=1$.

References

1. I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, "Finite-dimensional subalgebras in polynomial Lie algebras of rank one", Ukrainian Math. Journal. 63 (5), 827-832 (2011).
2. A. Cohen and J. Draisma, "From Lie algebras of vector fields to algebraic group actions", Transformation Groups. (8), 51-68 (2003).
3. A. González-López, N. Kamran, and P. J. Olver, "Lie algebras of differential operators in two complex variables", Amer. J. Math. 114, 1163-1185 (1992).
4. A. González-López, N. Kamran, and P. J. Olver, "Lie algebras of vector fields in the real plane", Proc. London

Math. Soc. 64 (3), 339-368 (1992).
5. S. Lie, Theorie der Transformationsgruppen, Vol. 3 (Teubner, Leipzig, 1893).
6. Ie. O. Makedonskyi and A. P. Petravchuk, "On nilpotent and solvable Lie algebras of derivations", Journal of Algebra. 401, 245-257 (2014).
7. J. M. Ollagnier, "Algebraic closure of a rational function", Qualitative Theory of Dynamical Systems. 5 (2), 285-297 (2004).
8. A. Nowicki, Polynomial Derivations and their Rings of Constants (Uniwersytet Mikolaja Kopernika, Torun, 1994).

Петравчук А. П., Сисак К. Я.

РОЗВ'ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ РАНГУ ОДИН

Нехай \mathbb{K} - довільне поле характеристики нуль, $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ - кільце многочленів та $R=$ $=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ - поле раціональних функцій від n змінних над \mathbb{K}. Алгебра Лі $W_{n}(\mathbb{K})$ всіх \mathbb{K} диференціювань кільця A становить великий інтерес, оскільки її елементи можуть розглядатися як векторні поля на \mathbb{K}^{n} з поліноміальними коефіцієнтами. Якщо L підалгебра із $W_{n}(\mathbb{K})$, то можна визначити ранг $\mathrm{rk}_{A} L$ підалгебри L над кільцем A як розмірність векторного простору $R L$ над полем R. Скінченновимірні (над \mathbb{K}) підалгебри рангу 1 над A вивчалися першим автором разом з I. Аржанцевим та Є. Македонським. Ми вивчаємо розв'язні підалгебри L алгебри Лі $W_{n}(\mathbb{K})$ з $\mathrm{rk}_{A} L=1$, без обмежень на розмірність над \mathbb{K}. Дано опис таких алгебр Лі в термінах многочленів Дарбу.

Ключові слова: алгебра Лі, розв'язна алгебра Лі, диференціювання, многочлен Дарбу, кільце многочленів.

