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COMPUTING THE MOORE-PENROSE INVERSE FOR
BIDIAGONAL MATRICES

The Moore-Penrose inverse is the most popular type of matrix generalized inverses which has many
applications both in matrix theory and numerical linear algebra. It is well known that the Moore-Penrose
inverse can be found via singular value decomposition. In this regard, there is the most effective algo-
rithm which consists of two stages. In the first stage, through the use of the Householder reflections, an
ingtial matriz is reduced to the upper bidiagonal form (the Golub-Kahan bidiagonalization algorithm,).
The second stage is known in scientific literature as the Golub-Reinsch algorithm. This is an itera-
tive procedure which with the help of the Givens rotations generates a sequence of bidiagonal matrices
converging to a diagonal form. This allows to obtain an iterative approzimation to the singular value
decomposition of the bidiagonal matriz.

The principal intention of the present paper is to develop a method which can be considered as an
alternative to the Golub-Reinsch iterative algorithm. Realizing the approach proposed in the study, the
following two main results have been achieved. First, we obtain explicit expressions for the entries of
the Moore-Penrose inverse of bidigonal matrices. Secondly, based on the closed form formulas, we get
a finite recursive numerical algorithm of optimal computational complexity. Thus, we can compute the
Moore-Penrose inverse of bidiagonal matrices without using the singular value decomposition.

Keywords: Moor-Penrose inverse, bidiagonal matrix, inversion formula, finite recursive algorithm.

Introduction

The most effective procedure to compute the
Moore-Penrose inverse involves two main stages

As is known, for a real m x n matrix A the [4].
Moore-Penrose inverse AT is the unique matrix Stage 1. Matrix reduction to the bidiagonal
that satisfies the following four properties [1]: form.

AATA = A, At AAT = At

(ATA)T = AT A, (AAT)T = AAT .

[ a1 a 0 0 ]
If A is a square nonsingular matrix, then A" = 1 12
1 . 0 a2 a3 0
= A~". Thus the Moore-Penrose inverse general- . )
izes the ordinary matrix inversion. : :
There is well-known formula for the Moore- 0 0 Ap—1n-1 On—1n
Penrose inverse which is obtained by the singular 0 0 0 Unn
value decomposition (abbreviated SVD) of the ma-
trix (see [1; 4], for instance). i 0 ]

The singular value decomposition of an m x n
matrix A with rank r is its factorization of the form
A=UAVT, (1.1)
where U is an m x m orthogonal matrix, A =
=diag[o1,09,...,0.] is an m x n diagonal matrix,
and V is an n xn orthogonal matrix. The diagonal
entries o1 > 09 > ... > o, > 0 of A are known as
singular values of the matrix A. Having the fac-
torization (1.1), the Moore-Penrose inverse can be
written as
AT =VATUT, (1.2)

o 1 -1 -1
where AT = diag[o] ",05 ..., 0}

agonal matrix.
© Yu. Hakopian, 2019

]is n x m di-

At this stage an m x n matrix, where m > n,
by means of the Householder reflections is trans-
formed to upper bidiagonal form

(1.3)
The computational process is known as Golub-
Kahan bidiagonalization |2]. Thereby the problem
is reduces to the Moore-Penrose inversion of the
bidiagonal matrix (1.3).

Stage 2. Golub-Reinsch SVD iterative algo-
rithm.

Once the bidiagonalization of the initial ma-
trix has been achieved, the next task is to zero the
superdiagonal entries in the matrix (1.3). With
this purpose the Golub-Reinsch algorithm is im-
plemented [3]. The algorithm, with the help of the
Givens rotations generates a sequence of bidiago-
nal matrices that converge to a diagonal form. As
aresult, at a certain step of the iterative process we
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get an approximation to the SVD of the bidiagonal
matrix (1.3). Having the SVD, the Moore-Penrose
inverse of the matrix is computed (see [1; 4], for
instance).

The objective of the present work is to de-
velop a method which allows to deduce formulas
for the entries of the Moore-Penrose inverse of
upper bidiagonal matrices. The obtained closed
form solution to the Moore-Penrose inversion may
be considered as an alternative to sufficiently
labour-consuming Golub-Reinsch iterative proce-
dure briefly described in the Stage 2 of this sec-
tion. Moreover, explicit expressions for the entries
of the Moore-Penrose inverse lead to fairly simple
finite numerical algorithm with optimal volume of
computational expenditures.

Partition of a bidiagonal matrix into blocks

Let us consider a real n x n upper bidiagonal
matrix

a1l a2
azz as3 0
A:
0 Ap—1n—1 Ap—1n
ann

(2.1)
Note that it suffices to consider square upper bidi-
agonal matrices since for rectangular upper bidi-
agonal matrices the problem can be easily reduced
to our case. Indeed, if m > n then according to
(1.3) we have the block structure

o)

where A is a square upper bidiagonal matrix of the
form (2.1). It can be seen that in this case

[g‘r:[ﬁ o 1.

We assume that the matrix A is singular, i.e.
11022 . ..any, = 0. Next, we assume that

aii+17£0,i:1,27...,n—1. (22)

Otherwise, if some of superdiagonal entries of the
matrix A are equal to zero, the problem of comput-
ing the Moore-Penrose inverse is decomposed into
several similar problems for bidiagonal matrices of
lower order.

To compute the Moore-Penrose inverse of the
matrix A, we apply a special partition of this ma-
trix into blocks. The partitioning procedure uses
the arrangement of zeros on the main diagonal
of the matrix. We distinguish the following four
cases.

Case 1: ay1 # 0, any # 0.

Let zero diagonal entries of the matrix A are
iy gy Qigigs vy Qiy_ 1y 15 where 1 < 7 < ip <
<+ <ipq <nandp>1 We split the matrix
into blocks drawing dividing lines after the rows
i1 — 1,43 — 1,...,ip—1 — 1 and after the columns
i1,%2,...,9p—1. As a result, the matrix (2.1) takes
a block diagonal form. The first and the last diag-
onal blocks are rectangular bidiagonal matrices of
the sizes (i1 —1) x4 and (n—ip—1+1) X (n—ip_1),
respectively, while the remaining blocks are square
lower bidiagonal matrices. As an illustration, a
pattern of the matrix (for n = 10), the partition-
ing procedure and resulting block diagonal struc-
ture are shown in Fig. 2.1 (stars represent nonzero
entries).

* %
* *
* %
0 %
0 [*
* *
* %
0%
* *
*
* %
* *
*
*
*
* *
*
*

* %
*

Figure 2.1. Partition of the matrix (case 1).

Case 2: a11 =0, ann # 0.

We allocate the first column of the matrix
A, as a separate zero block of the size n X
x 1. Next, we partition the remaining subma-
trix into diagonal blocks as follows. If there are
other zero diagonal entries of the matrix A, say
iy gy Qigigy vy Qi 1, 19 where 1 < i1 < iy <
< -+ < ip—1 < nand p > 1, then the subma-
trix is subdivided according to the rule drscribed
in the Case 1. As an illustration, see a pattern
of the matrix given in Fig.2.2. The last diagonal
block of the submatrix is rectangular bidiagonal
matrix of the size (n —ip—1 +1) X (n — ip_1); the
remaining diagonal blocks are square lower bidiag-
onal matrices. If there are no other zero diagonal
entries, except the first one, then the submatrix is
not subdivided.
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0 |*x
* %
* *
* *
0 | %
0%
* *
0 | %
* *

*

*

* ok

* %
* *
0 *
*
* %
*
* *
*

Figure 2.2. Partition of the matrix (case 2).

Case 3: ay1 # 0, anp = 0.

First, we allocate the last row of the matrix
A, as a separate zero block of the size 1 x n.
Next, we partition the remaining submatrix into
diagonal blocks using the same idea. If there are
other zero diagonal entries of the matrix A, say
@iy gy Qigigs ey Qip 1y 19 where 1 < i1 < iy <
< -+ <ip_1 <nandp > 1, then the submatrix
is subdivided by the rule drscribed in the Case 1
(see a pattern of the matrix given in Fig.2.3). The
first diagonal block of the submatrix is rectangu-
lar bidiagonal matrix of the size (i; — 1) X 41; the
remaining diagonal blocks are square lower bidiag-
onal matrices. If there are no other zero diagonal
entries, except the last one, then the submatrix is
not subdivided.

Figure 2.3. Partition of the matrix (case 3).

Case 4: a11 =0, any = 0.

The allocation of the first column and the last
row of the matrix A gives us three zero blocks of
the sizes (n — 1) x 1, 1 x (n — 1) and 1 x 1 (see
Fig.2.4). Then we partition the remaining subma-
trix. If there are other zero diagonal entries of the
matrix A, say @i, iy, Qiyins -« > Wiy ip_y, Where 1T <
<ip <ig < - <ipq <nandp > 1, then the
submatrix is subdivided by the rule drscribed in
the Case 1. The diagonal blocks of this subdivi-
sion are square lower bidiagonal matrices. If there
are no other zero diagonal entries except the first
and last, then the submatrix is not subdivided.

Figure 2.4. Partition of the matrix (case 4).

Thus we have four principal cases of block par-
titioning the initial upper bidiagonal matrix A,
schematically presented in Fig. 2.5.
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Bl Bi‘r
By N
A= AF = B;
B
P BI‘J|r
case 1 case 1
B, 0
BY
By
+
A=1p At = By
B
P Bp+
case 2 case 2
B,
By
BY
A =
B+
B, AT = ? 0
0
case 3 B+
P
B, case 3
B, 0 0
+
A= By
B+
Bp A+ _ 2 0
0 0
4
case B;
case 4

Figure 2.5. The cases of block partitioning.

Accordingly, the Moore-Penrose inverse also Figure 2.6. The structure of the Moore-Penrose
has a block structure, as shown in Fig. 2.6. Inverse.
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Summarizing the previous reasoning, we con-
clude that our task is to find the Moore-Penrose
inverses for blocks of the following three types:

type 1: bidiagonal block of a size m x m;

type 2: bidiagonal block of a size m — 1 x m;

type 3: bidiagonal block of a size m x m — 1.
In Fig.2.7 we schematically give the types of di-
agonal blocks (the mark * stands for a nonzero
entry).

type 1

type 3
Figure 2.7. The types of diagonal blockfs.

It is necessary to pay attention to the follow-
ing circumstance. As follows from the process of
partitioning the initial matrix (2.1) into blocks, in
each of the Cases 1-4 we have at most two rect-
angular blocks (of size m — 1 x m or m x m — 1).
The remaining blocks are square lower bidiagonal
matrices. As an illustration, see Fig. 2.5.

Computing the Moore-Penrose inverse for a

block of the type 1 is not difficult. Consider a
square matrix
di
b1 do
B = : : ;o (23)

bm— 1 dm

where d; # 0, ¢« = 1,2,...,m and b; # 0, i =
=1,2,...,m—1 (we choose new notation for block
entries). Since the matrix (2.3) is nonsingular then
Bt = B! (see [1], for instance). This inverse can
be easily found.

Proposition 1. The entries of the matriz Bt =
= [2ijlmxm are as follows: for the indices i =
=1,2,...,m we have

1 i—1

Zij = (—1)1-4-]2 | I re, j=1,2,...,i—1;
(2 .
s=j

1.

d.’
2;;=0,j=1+1,i+2,...,m,
(2.4)
where

(2.5)

Based on the formulas (2.4) we can write the
following simple procedure to calculate the entries
of the matrix BT.

Algorithm (B = B*)/typel

1. Compute the quantities ry defined in (2.5).

2. Compute the lower triangular part of the

matrix Bt. For indices i =1,2,...,m:
1 . .
Zii = E; Zij = _szij+17 ] =1— 1,’&—2,...,1.
1

End algorithm
It can be readily seen that Algorithm
(B = B*)/type 1 requires

An — Loz o)

ops 9 (26)

arithmetical operations.

Next, we will focus our attention on computing
the Moore-Penrose inverse for the blocks of type 2
and 3.

A way of computing the Moore-Penrose
inverse

To solve the problem, in this section we outline
an approach based upon the well-known equality

AT = lim (ATA D)7 AT, (3.1)
e—=+0

where I is the identity matrix, which holds true
for any real matrix (see [1; 4], for instance). Here
we present the main ideas to compute the Moore-
Penrose inverse for a block of the type 2. For a
block of the type 3, as will be seen below, the
problem is reduced to the case under considera-
tion. Note that, as in the previous case, it is con-
venient to introduce new notation for the entries
of the block.
Let us have an m — 1 x m bidiagonal matrix

di b
da by

an —1
(3.2)
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where b;,d; # 0,7 =1,2,...,m —1and m > 2.
The matrix

is tridiagonal matrix of the following structure:

Le)=BTB +eI (3.3)
d% +e bidq
brdy d% + b% + € bado 0
L(e) = - (3.4)
0 b—2dm—2 d%l,l + b?n72 +ée bp_1dm—1
bm—ldm—l bgn—l +e

To invert this matrix, let us apply advantage of
the algorithm developed in [5]. Consider a nonsin-
gular symmetric tridiagonal matrix

€11 C12
Co1 €22 23 0
C =
0 Cm—1m—-2 Cm—1m—-1 Cm—-1m
Cmm—1 Cmm
(3.5)

We assume that m > 2. Referring to [5], the ma-
trix ™' = [@i;]mxm can be obtained by the fol-
lowing computational procedure.

Procedure 3d/inv (C' = C~1)
1. Compute the quantities f; (i = 2,3,...,m),
gi(1=2,3,...,m—1)
and h; (1=1,2,...,m—1):

Cii Cii+1 Cii
) hi =

gi = (36)

fi = )
Cii—1 Cii—1 Cii+1

Note: if m = 2, then the quantities
g; are not introduced.

2. Compute recursively the quantities p; (i =
=1,2,...,m):

fm =1, lffmflz_fmv

Wi = = fiy1phiv1 — Giv1fit2 (3.7)

t=m-—2m-—3,...,1.

3. Compute recursively the quantities v; (i =

=1,2,...,m):
V1:1, V2:_h‘17
1 :
Vv, = _hi—lyi—l - Vi—2, 1= 3,4, L.,
i—1
(3.8)

4. Compute the quantity

t = (cripn + crapz) b (3.9)

Note: since C' is nonsingular matrix,
then C11 M1 + C1242 ;é 0 [5]
5. The entries of the upper triangular part of
the matrix C~! are computed:

Tij = pivit, 1 =1,2,...,7;
(3.10)

i=1,2,....m.

6. The entries of the lower triangular part of
the matrix C~! are found:

Jiij:l‘ji,i:j—Fl,j—‘rQ,...,m;

j=12....m—1. (3.11)

End procedure

The proposed way to obtain the Moore-Penrose
inverse B is as follows. In consistence with equal-
ity (3.1) and notation (3.3), we have

B* = lim L(e)"'B”.

lim (3.12)

Finding first the inverse matrix L(¢) ", the entries
of the matrix L(¢) "' BT are calculated and a char-
acter of their dependence on the parameter € is
revealed. Then, according to the equality (3.12),
passing to the limit when € — +0, we arrive to a
closed form expressions for the entries of the ma-
trix BT.

The Moore-Penrose inverse of rectangular
blocks

Let us consider as the matrix C' from (3.5) the
tridiagonal matrix L(e) obtained in (3.4). Com-
paring the records of these matrices, we have

ci=d?+b? [ 4e,i=1,2,....m (4.1)

(in order to unify records of formulas, we set by =
=0) and

Cii-‘rl:bidi, 1=1,2,...,m—1;
(4.2)

In accordance with our plan, let us carry out
a more detailed analysis of the quantities succes-
sively computed in the procedure 3d/inv from
Section 3.

Consider first the quantities f;, g; and h; which
were introduced in (3.6). Using the expressions
(4.1) and (4.2), we get

Ciim1 =bi—1di—1, 1=2,3,...,m.

fi=f;, toue,i=23,...,m,
where
4} + b7, 1

fi= bi—1di—1 ' @ bi—1d;—1 ;

(4.3)
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bid;

i = —,1=2,3,...,m—1; 4.4
9 i m (44)
hi:](?Li‘FﬁiE,i:l,Q,...,m—l,

where P
° i T 01 1
=1 = —. 45
h nd, T o (4.5)

Next, go to the quantities u; and v; recursively
defined in (3.7) and (3.8), respectively.
Lemma 2. The quantities pu; are represented as

P =Hm +Ym€,  Pm—1 =Hm—1 +¥Ym—1€,

pi =t +ye +0(e?), 1<i<m-2,
(4.6)
where the quantities ,totl and ~y; satisfy the following
recurrence relations:

o o (o)

lumzlv lum—lszma

o ° o o (47)
Hi=— fip1Fit1 —Gi+1 Fit2,
i=m-—2,m-—3,...,1

and

Ym =0, Ym—1 = —Qm,

Vi = = fig1 Vi1 — Git1%i+2 — Qg1 Pt
t=m-—2,m-—3,...,1.
(4.8)
Proof. Since p,,, =1 then in (4.6) we set /im:
=1, v = 0. Further, pm—1 = —fm (see (3.7)).
According to the expressions (4.3) we have f,, =

o
=f,, +ame. Therefore in the representation (4.6)

o
we set Hpy—1= — fo, Ym—1 = —Qm.

For the indices in the range 1 < i < m — 2,
required representations can be readily derived by
induction from the relations (3.7) using expressions
(4.3). Indeed, having done simple transformations
as follows

i = —fiyihiv1 — Git1fit2

= —(fiy1 +oip1e) (g1 +vip1e + O(e?))
—gi+1(Hiy2 +Yivoe + O(€%))

= (= fiz1Miv1 —Giv1 Hiy2)
(= fir1 Yit1 — Giv1Vir2 — Qg1 Hip1)e
+0(e?),

we get (4.6) as well as recurrence relations (4.7)
and (4.8). O
The quantities /32 computed by the recursion

(4.7) can be represented in closed form.
Let us introduce the following notation:

_bs
Ts:—,

ds

Additionally, we set ro = r,,, = 1.

s=1,2,....m—1. (4.9)

Lemma 3. The quantities /jz can be written in
the form

ﬁi:(q)m*inrs, i=1,2,...,m. (4.10)

Proof. Firstly, the value ,lim: 1 conforms to
the record (4.10). Then, in accordance with (4.3)
and (4.7),

o o b
'm—1
Hopp—1= — fm: - = —Tm-—1-

dmfl

Further reasoning is carried out by induction. Us-

ing the expressions (4.3) and (4.4), proceeding
from (4.7) we obtain
y dzz+1 + b7 m—i—1 —
o= H T
s=i+1
-1
bit1dit1 m—ico
“ha, AL
s=i+2

—1
o d2,, +b? bit1d;
= m—i ” (i S O o e
= (1) , ”( bidi YT b >
s=i+2

which completes the proof. O

The next assertion is a simple consequence of
the formula (4.10).
Corollary 4. The following relation holds:

ﬁi: —T; loﬁi_;,_l, i:l,?,...,m—l. (4.11)

A representation similar to (4.6) takes place
also for the quantities v;.
Lemma 5. The quantities v; are represented as

(e} (o)
vy =vy +61€, Vo =V3 +l2€,

(4.12)

V; :lc/)i +5i€+0(€2), 3§z§m,

where the quantities Vi and & satisfy the following
recurrence relations:

o

;1:1, 132:7}113
° o ° 1 o
Vi= — hi—1Vi-1 — Vig, 1=3,4,...,m
gi—1
(4.13)
and
51:0, 52:7517
§i = — hi_1 0i_1 — Sia — Bic1 Vie1
gi—1
1=3,4,...,m.

(4.14)
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Proof. Since vq = 1 then in (4.12) we set U=1,
91 = 0. Further, v = —h; (see (3.8)). Accord-
ing to the expressions (4.5) we have h; :;Ll +pe.
Therefore in the representation (4.12) we set Vo=

o

= — h1, 62 = —f1.

For the indices in the range 3 < i < m, re-
quired representations can be readily derived by
induction from the relations (3.8) using expressions

(4.5). Indeed, having done simple transformations
as follows

vi = —hi1vi—1— Vi2

i1
= —(;uel +ﬁi715)(5i71 +0;_18 + O(e?))
pr— Uiz +0i_2e + O(€2))

o o 1 o
= (= hi—1Vi—1 — Vi—9)

i—1
+(— hi—1 0i—1 — giil_l(sif2 - Bi—1 51'71)5
+0(£?),

we get (4.12) as well as recurrence relations (4.13)
and (4.14). O

We can write closed form expressions for the
quantities 31 as well.

Lemma 6. The quantities 131 can be written in
the form

., Mm.

(4.15)

Proof. The value 1= 1 conforms to the record
(4.15). Then in accordance with (4.5) and (4.13),

Further reasoning is carried out by induction. Tak-
ing into account the expressions (4.4), (4.5) and
using (4.13) we get

o o o 1 o
Vi = — hi-1Vi1 — Vi_2
9i—1
2 2 1—2
o di b, _1)1Hl
bi—1d;—1 ) Ts
bi_odi_2 i—1 8’7*3 1
T bi—1di1 (_1) HS:l Ts

N i+, 1
. bi—1di—1 T2
o

bi—adi—o
bi—1d;—1

1—3 i—1
) 1 1 1 , 1
= 71 Z+17 —_— = 71 i+1 —_
(-1) P S|:|1 - (-1) S|:|1 e

which completes the proof. O
The next assertion is a simple consequence of
the formula (4.15).

Corollary 7. The following relation holds:

o 1 o
Vipi= —— Vi,
T

i=1,2,....,m—1. (4.16)

Our next task is to derive an expression for the
quantity ¢ given in (3.9), depending on the param-
eter e. Since c1; = d3+e, c12 = bid; (see (4.1) and
(4.2)) then taking into account the representations
(4.6) for the quantities p; we get

((d2 + ) (1 +me + O(e2))

+bydy (Ha +72e + O(2))) !

(d%(zh +r1 ﬁQ)

(i +dy (11dy + 72b1))e + O(2)) 7L,

t =

By virtue of the relation (4.11), /31 +7r ﬁg: 0.
Thus
1
(1 +di(1di + 72b1))e + O(e?)
Having the representations for the quantities
i, v; and t, by formulas (3.10) and (3.11) we get
the entries of the inverse matrix
L(5)71 = [Z4j]mxm -
Further, let us introduce the matrix
Y(e) = L(e) 'B”. (4.18)
According to the equality (3.1) and notation (3.3),

Bt = lim Y(e). If
e—=+0

t =

(4.17)

B+ = [Zij]mxm—l 5 Y(E) == [yij(s)]mxm—l

then
zij = lim i (e),
(4.19)
As follows from (4.18), the entries of the matrix
Y (e) are calculated by the rule

i=1,2,....m,j=1,2...,m—1.

Yij (E) = xijdj + Jiij+1bj . (420)

Subject to the formulas (3.10) and (3.11), for a
fixed index j in the range 1 < j < m — 1 we con-
sider separately two cases: i = 1,2,...,j and i =
=7j+1,74+2,...,m.

e Indices i =1,2,...,7.

Taking the expression (3.10) for the entries z;;,
from (4.20) we can write

Yij(€) = tvi(pyd; + p1j41b;). (4.21)

Then, using the representations (4.6) of the quan-
tities u;, we have

(H; +vje + O(e?))d;

+(Hjr1 416 + O(€2))d;

pjds + pjpaby =

= (K dj+ K41 b;)
+(vidj +vj+1bj)e + O(e?).
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As follows from the relation (4.11),
Hj djtHigr by = dj(Hy +7j fj1) = 0.
Thus
/Ljdj + /~Lj+1bj = (’)/jdj + ’Yj+1bj)€ + 0(82). (422)

Substituting the expression (4.22) as well as the
representations (4.12) and (4.17) of the quantities
v; and t, respectively, into the right hand side of
the equality (4.21) yields

vi (;d; + vj41b;) + O(e)
Py +di(y1dy +2b1) + O(e)

Yij(e) =

By taking limit in the previous equality, according
to (4.19) we find

_ Vi (0 4 v541by)
By +dy (’}/1d1 + ’Yle)

Zij

Further, let us introduce the notation

Then the entries z;; can be written as follows:

(4.24)

where

g =i +dyu; . (4.25)

Now let us turn to the quantities u; defined in
(4.23). For the index j = m — 1, using the expres-
sions (4.8) and (4.3), we have

1
Um—1 = ’Ym—ldm—l""_r}/mbm—l = _amdm—l = -
(4.26)
For the indices j =m —2,m —3,..., 1, taking the
expressions (4.8), (4.3) and (4.4), we get
(— 2fj+1 R
djy1 + b5 bj+1dj+1
bjd;

Y5 d;

Yj+2d;

j+1
—Vi+1b — =
j
bjt1d;ta

[e]
- 5 My
j+1
—Yj+1b; — ;) (Vi+1dj+1 + Vi+2bjr1)
1] ’
b, Hiv1 .
Hence

d]+1 o

V4105 = === (VrrdirtYs2bi1) =
J J

by

Hjpr -

With regard of the notation (4.23) we arrive at the
equality
dj+1 1 o

Ujp1 — 7 Mjqq -
J+1 j+1
b; b,

u; = — (4.27)
Summarizing the above considerations, on the ba-
sis of the obtained equalities (4.26) and (4.27), we
can state that the quantities u; satisfy the follow-
ing relations:

1
Um—-1 = —b . ’
e (4.28)
j = - Jre  JT

b; ’

j
j=m-—-2m-3,...,1.

The quantities u; can be represented in closed
form as well. Namely, the following statement
holds.

Lemma 8. The quantities u; are written as

im—j [m—k m—1
GO - 1
w= o) I )
7 k=1 \ s=j ° s=m—k+1

i=1,2,....m—1. (4.29)

The assertion can be proven by direct substitut-
ing the expression (4.29) into the relations (4.28)
and using the expression (4.10) for the quantities
M.

As a direct consequence of the expressions
(4.10) and (4.29) we get the expression for the
quantity g defined in (4.25).

m—k m—1

Lemma 9. The quantity q is written as
1
M) o
s=1 % s=m—k+1
(4.30)

m
oo 3
k=1
Finally, let us replace the expressions (4.15),
(4.29) and (4.30) of the quantities ;, u;j and ¢, re-
spectively, into (4.24). As a result, we obtain the
J following expression for the entries of the upper
triangular part of the matrix B+:

1

‘ 'm—j m—k 1 m—1
ISR I ( 11 )
k=1 \ s=j T's s=m—k+1
%ij = 1 m—1

e () (T )

j (4.31)

e Indicesi=j5+1,7+2,...,m.
Using the expressions (3.10) and (3.11), from
(4.20) we get the equality

Yij(e) = tpi(vjd; + vj41b;). (4.32)
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In accordance with the representations (4.12) we
have

(v +6;¢ + O(e?))d;
+(ﬁj+1 +8j416 + O(g2))b;

= (v di+ Vs b))
+(0;dj + dj+1bj)e + O(e?).

As follows from the relation (4.16),

l/jdj + Vj+1bj =

Vj djt Vi1 by = dj(Vj +rj Vi) = 0.
Thus
l/jdj + Vj+1bj = (5jdj + (Sj.Hbj)E + 0(52). (433)

Substituting the expression (4.33) as well as the
representations (4.6) and (4.17) of the quantities
w; and t, respectively, into the right hand side of
the equality (4.32) yields

i (0;d; + 8j11b) + O(e)
/341 +d1(71d1 + ’}/Qb1) + O(E)

By taking limit in this equality, when ¢ — +0,
according to (4.19) we find

Yij(e) =

i (85d; + 04+1b5)
My +di(y1dr + y2b1)

Similarly to the previous case, we introduce the
notation

Zij =

’ij(dej—f—(SjJrlbj, j=12...,m—1. (434)

Then the entries z;; can be written as follows:
(o)

ay =M i — 12, m. (4.35)
q
Consider the quantities w; defined in (4.34).
For the index j = 1, using the expressions (4.14)
and (4.5), we have

w1 = §1d1 + 521)1 = *51[)1 = (436)

T
For the indices j = 2,3,...,m — 1, taking the ex-
pressions (4.14), (4.4) and (4.5) yields

o 1 o
0j41b; = (= hy 65— ;53'71 — B v)b;
J
d2 + b2 be vd
J J—1 j—105-1
= 3 Tmley 237185l e
bid; bid;
_bjldj l/j b2]
b4 bj_1d;_1
= 5jdj ]dj 5]'* J dj] 5]'—1
15
bj—l
= —0jdj — == (85bj-1 + 8j-1dj-1)
iy

. i= 41, 5+42,...,m.

Hence

b 1.
056l +81b; = = (§5madj 1+ d5b; 1) = V5
J J

In accordance with notation (4.34) we get the
equality

bj_1
_fwj—l _

1 o
— ;. 4.37
d] d. I/J ( )

wj; =

<

Summing up the above considerations, on the ba-
sis of the equalities (4.36) and (4.37), we infer that
the quantities w; satisfy the following relations:

1
wy = ——
1 d17
b w1 s
w, _Yjwiat vy i=23,....m—1.

d; ’
(4.38)
As with uj, the quantities w; can be repre-
sented in closed form. The following statement
holds.
Lemma 10. The quantities w; are written as

(4.39)

The assertion can be proven by direct substi-
tution of the expression (4.39) into the relations
(4.38) and by using the expression (4.15) for the
quantities lc/)j.

Finally, let us replace the expressions (4.10),

(4.39) and (4.30) of the quantities #;, w; and g,
respectively, into the equality (4.35). Resulting
formula for the entries of the lower triangular part
of the matrix BT is of the following type:

e (i) 1) i)

s=1 k=1 \s=1

ij = m m—k 1 m—1
Sl
k=1 s=1 ° s=m—k-+1

i=j4+1,7+2,...,m. (4.40)

Combining the above considerations, i.e. hav-
ing the formulas (4.31) and (4.40), we arrive at the
following statement.

)
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Theorem 11. Let B be an m — 1 x m bidiago-
nal matriz given in (3.2). Then the entries of the
Moore-Penrose inverse BT = [zijlmxm—1 of this
matriz are as follows:
1) for indices j

1,2,....m — 1 and ¢

=1,2,...,5:
‘ _m—j m—k 1 m—1
e () (I )
B k=1 \ s=j ° s=m—k+1
Fij = i—1 m m—k 1 m—1 !
Hrs.djz:(H 7”s>< rs>
s=1 k=1 s=1 s=m—k+1

(4.41)
2) for indices j = 1,2,....m —1 and i =j +

+1,7+2,...,m:
m—1 J k—1 j—1
e (1)$ 1) )
s=1 ° s=k
i -

s=1 k=1
m m—k 1
WY (T (
k=1 s=1 s=m—k+1
(4.42)

where the quantities rs are defined in (4.9).
Below is an example to illustrate Theorem 4.1.
Example 1. Consider m — 1 x m bidiagonal matrix

ij = m—1

1 1
Calculations by the formulas (4.41) and (4.42) give
the following result:

(71)2+j (1;31)? Z:17277]7

Zij = . )
() L i it2,. . m
m

Thus in Theorem 4.1 we give formulas for the
entries of the Moore-Penrose inverse of a block of
the type 2. In addition, based on the expressions
and recurrence relations obtained in this section,
we suggest a numerical algorithm to compute the
entries of the matrix BT = [2]mxm—1-

Algorithm (B = B™)/type 2

1. Compute the quantities r5 (see (4.9)):

bs

—, s=12...m—1;rg=rp=1.

ds

Ts =

2. Compute the quantities /Oll (see (4.7),(4.11)):

o o () 3
=15 = —1; iy, t=m—1m—2,...,1.

)

3. Compute the quantities BZ (see
(4.13),(4.16)):

[e] [e] 1 o

vi=1; vipg=——v;,1=12,...,.m—1

4. Compute the quantities u; (see (4.28)):
1

bm—l

Um—1 = ;
(o)
iU+ it
b; ’
j

j=m-2m-3,...,1.

Uj; = —

5. Compute the quantities w; (see (4.38)):

bj—1wj—1+ ¥
d; ’
j=23,...,m—1.

wj:f

6. Compute the quantity ¢ (see (4.25)):

q =M1 +diu; .

7. Compute the upper triangular part of the
matrix BT (see (4.24)):

V; ’U,j

2ij = L i=1,2,...,5;7=12....m—1.

8. Compute the lower triangular part of the
matrix BT (see (4.35)):

o
_Hiwj
- )

q
1=3+1,74+2,...,m;
j=12,....m—1.

Zij

End algorithm

Note that the numerical implementation of the

Algorithm (B = B™)/type 2 requires
A% = m? 4+ O(m)

ops

(4.43)

arithmetical operations.
Next consider a block of type 3. Let an m x
x m — 1 bidiagonal matrix

dy
by

ds

bz (4.44)

dm—l

bm—l _

bm—2

be given, where b;,d; #0,i=1,2,...,m — 1 and
m > 2. The problem of finding the Moore-Penrose
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inverse of this matrix is reduced to the previous
case. Indeed, by virtue of the well-known property
(see [1], for instance) we have
BT =((B")")T,
where the matrix B7 is already a block of type 2
(compare (3.2) and (4.44)). Therefore as a conse-
quence of Theorem 4.1 we can formulate the fol-
lowing statement.
Theorem 12. Let B be an m x m — 1 bidiago-
nal matriz given in (4.44). Then the entries of the
Moore-Penrose inverse BT = [z;;]m—1xm of this
matriz are as follows:
1) for indices i =1,2,.
m

1,2,...
m—k
z+]
R
245 = —
Mo 3 (10

s=1 k=1

(4.45)

,m—1 and j

s

[

l\::ﬁ“':]

(4.46)
—landj=1i+

1) (1)

)5

2) for indices i = 1,2,...,m
+1,:+2,...,m

(_1)i+j+l

s=j k=1
m—1

(1)

k=1
(4.47)

where the quantities rs are defined in (4.9).

Finally, with equality (4.45) in mind, we can
write the following numerical algorithm to com-
pute the entries of the matrix B = [2;;]m—1xm.-

Algorithm (B = B*)/type3

1. Use Algorithm (BT = (BT
compute the matrix (BT)*.

2. Calculate BT = ((BT)*)T.

End algorithm

As an obvious consequence of (4.43), we state
that Algorithm (B = B™)/type 3 also requires

)*)/type 2 to

arithmetical operations.

So based on the above study we can formulate

the following statement.
Proposition 13. Let a singular upper bidiago-
nal matriz A given in (2.1), with nonzero super-
diagonal entries, be represented in the block form,
according to the rule described in the Section 2
(Cases 1-4). These are blocks By, k = 1,2,....p
(see Fig. 2.5, as an illustration). Then depend-
ing on the type of a block the entries of the blocks
B in block representation of the matriz A* (see
Fig. 2.6, as an illustration) are calculated by the
formulas obtained in Proposition 2.1 ((2.4) and
(2.5)), Theorem 4.1 ((4.41) and (4.42)) or The-
orem 4.2 ((4.46) and (4.47)).

To compute the Moore-Penrose inverse A1, we
have developed numerical procedures as well.
Proposition 14. The entries of the blocks
B,j, k 1,2,...,p, included in the block
structure of the matriz AT (see Fig. 2.6) can
be calculated by Algorithm (B = BY)/typel,
Algorithm (B = B™")/type2 or Algorithm
(B = B*)/type 3, with expenditure of arithmeti-
cal operations estimated in (2.6), (4.43) or (4.48),
correspondingly.

Below we give an example to illustrate the work
of the numerical algorithms.
» Ezample 2. Consider a matrix, which is divided
into blocks as follows:

012
3 —4
-6 3
8

Applying the above algorithms, we get the follow-
ing result, which coincides with the computations

AR =m?+ O0(m) (4.48)  done with MATLAB.
r 0.0796 —0.0206 .
0.1682  0.0082
0.0721 —0.1393
0.1667 _ 0.0000 _ 0.0000
At — —0.3333  0.5000  0.0000
= 1.6667 —2.5000 —1.0000
0.2500
0.2006  0.1996 —0.1331  0.0499
0.0506 —0.0337 —0.1442 0.0541
L 0.0125 —0.0083  0.0055 0.1229
Conclusion

In the work we obtained both explicit formu-
las and finite numerical algorithm to compute the
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Moore-Penrose inverse of bidiagonal matrices. We
emphasize the following important feature of the
numerical algorithm. Proceeding from the struc-
ture of the blocks By, £ = 1,2,...,p, in the
block representation of the matrix A™ (namely, the
presence of zeros located at predetermined places)
and the estimations of the number of arithmeti-

(see (2.6), (4.43) and (4.48)), we can assert that
for computing one nonzero entry of the matrix
AT asymptotically one arithmetical operation is
expended. Thereby the proposed computational
method can be considered as optimal. What is
more, we point out another important property of
the computational algorithm. The blocks B,: are

cal operations required to compute each block B,j computed independently of each other.
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Axonan 1O. P.

OBYUCJIEHHY OBEPHEHOT'O BI/IOBPAYKEHHSI
MYPA-TIEHPOY3A JJIsI IBYIIATOHAJILHUX
MATPUIIH

O6eprere Binobpakerus Mypa—Ilenpoysa € HaltOLIBIN TOMUPEHNM BiOOParKEHHSIM, 110 BUKOPUCTO-
BYETHCsI JjIsd TIONTyKYy obepHenol marpui. Ile BimoOpakeHHsT Mae YUCIE€HHI 3aCTOCYBAaHHS sIK Y TEOPIl
MAaTpHUIlb, TaK 1 B 00YMCIIOBAIBHIN JTiHiltHIK anreOpi. Bimomo, mo obepruena marpuiis Mypa—Ilernpoysa
MOxKe OyTr oTpuMaHa 4yepe3 CUHrYyIapHuil po3kiaan. HaitedpekTunHinmit 3 icHyI09nX ajJropuTMmiB cKJa-
JaeThbcsd 3 ABOX KpokiB. Ha meprmomy kporii, BUKOPUCTOBYIOUN BitobpakeHHs XaycxXoJiepa, I04aTKOBa
MaTPUIsl 3BOJAUTLCA 0 BEPXHBOIO JIBYyiaronaiabaoro suriany (amaropurm [omyba-Kaxana). dpyruii
KpPOK BijjomMuii y HayKOBiil jiTeparypi gk asroputm lomyba—Paitama. Ila itepamiitna mporemypa 3a
noromororo Meroxy ['iBerHca reHepye MOCIiOBHICTD ABYMiaroHAJIBHUX MATPHIlh, STKa 30iraerhes 10 mia-
TOHAJIBHOI'O BUIJIAY. B Takuil crocid orpumMyeThest iTepariiiiiie HAOIMKEHH JI0 CUHTYJISIPHOTO PO3KJIAJLY
JABy/JliaroHajbHol MaTpuii. ['0JI0BHOIO MeTOIO ITi€l cTaTTi € PO3pOOKa METOMY, KN MOXKHA PO3IVISIATH
JK aJbTepPHATUBHY 3aMiny ajropurmy lomyba—Paitama. 3a jormomoroio peasiizaliii 3apoIoHOBAHOTO,
OyJ10 OTpUMAaHO JIBa ToJIOBHI pedyibraru. [lo-mepie, BuBeneHo siBHI OPMyIIH JIJIst €JIEMEHTIB 00epHEHNX
marpunk Mypa-Ilenpoysa mis aByaiaronaspanx marpuilb. [lo-npyre, BukopuctoByodn i (opmyiin,
MOOYIOBAHO CKIHIYEHHWH PEKYPCUBHUN AJTOPUTM, ONTHMAJIBLHOI OOYMCIIOBAILHOI CKJIAIHOCTI. Takmm
YUHOM, 3aIlPOMIOHOBAHO BapiaHT obumcaenus obepuenol marpuii Mypa—Ilenpoysa st aByaiaroHab-
HUX MaTPHIlb, MO HEe BUKOPUCTOBYE CUHTYJISIPHUN PO3KJIA]T.

Kuaro4oBi caoBa: mcesmoobepuennss Mypa—Ilernpoysa, aByaiaronaabaa mMaTpuild, GpopMmyaa obep-
HEHHsl, PEKYPCUBHUI AJITOPUTM.
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