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COMPUTING THE MOORE-PENROSE INVERSE FOR
BIDIAGONAL MATRICES

The Moore-Penrose inverse is the most popular type of matrix generalized inverses which has many
applications both in matrix theory and numerical linear algebra. It is well known that the Moore-Penrose
inverse can be found via singular value decomposition. In this regard, there is the most effective algo-
rithm which consists of two stages. In the first stage, through the use of the Householder reflections, an
initial matrix is reduced to the upper bidiagonal form (the Golub-Kahan bidiagonalization algorithm).
The second stage is known in scientific literature as the Golub-Reinsch algorithm. This is an itera-
tive procedure which with the help of the Givens rotations generates a sequence of bidiagonal matrices
converging to a diagonal form. This allows to obtain an iterative approximation to the singular value
decomposition of the bidiagonal matrix.

The principal intention of the present paper is to develop a method which can be considered as an
alternative to the Golub-Reinsch iterative algorithm. Realizing the approach proposed in the study, the
following two main results have been achieved. First, we obtain explicit expressions for the entries of
the Moore-Penrose inverse of bidigonal matrices. Secondly, based on the closed form formulas, we get
a finite recursive numerical algorithm of optimal computational complexity. Thus, we can compute the
Moore-Penrose inverse of bidiagonal matrices without using the singular value decomposition.

Keywords: Moor-Penrose inverse, bidiagonal matrix, inversion formula, finite recursive algorithm.

Introduction

As is known, for a real m × n matrix A the
Moore-Penrose inverse A+ is the unique matrix
that satisfies the following four properties [1]:

AA+A = A , A+AA+ = A+ ,

(A+A)T = A+A , (AA+)T = AA+ .

If A is a square nonsingular matrix, then A+ =
= A−1. Thus the Moore-Penrose inverse general-
izes the ordinary matrix inversion.

There is well-known formula for the Moore-
Penrose inverse which is obtained by the singular
value decomposition (abbreviated SVD) of the ma-
trix (see [1; 4], for instance).

The singular value decomposition of an m × n
matrix A with rank r is its factorization of the form

A = UΛV T , (1.1)

where U is an m × m orthogonal matrix, Λ =
= diag [σ1, σ2, . . . , σr] is an m×n diagonal matrix,
and V is an n×n orthogonal matrix. The diagonal
entries σ1 ≥ σ2 ≥ . . . ≥ σr > 0 of Λ are known as
singular values of the matrix A. Having the fac-
torization (1.1), the Moore-Penrose inverse can be
written as

A+ = V Λ+UT , (1.2)

where Λ+ = diag [σ−11 , σ−12 , . . . , σ−1r ] is n ×m di-
agonal matrix.

The most effective procedure to compute the
Moore-Penrose inverse involves two main stages
[4].

Stage 1. Matrix reduction to the bidiagonal
form.

At this stage an m × n matrix, where m ≥ n,
by means of the Householder reflections is trans-
formed to upper bidiagonal form

a11 a12 0 . . . 0
0 a22 a23 . . . 0
...

. . . . . . . . .
...

0 . . . 0 an−1n−1 an−1n

0 . . . 0 0 ann

0


.

(1.3)
The computational process is known as Golub-
Kahan bidiagonalization [2]. Thereby the problem
is reduces to the Moore-Penrose inversion of the
bidiagonal matrix (1.3).

Stage 2. Golub-Reinsch SVD iterative algo-
rithm.

Once the bidiagonalization of the initial ma-
trix has been achieved, the next task is to zero the
superdiagonal entries in the matrix (1.3). With
this purpose the Golub-Reinsch algorithm is im-
plemented [3]. The algorithm, with the help of the
Givens rotations generates a sequence of bidiago-
nal matrices that converge to a diagonal form. As
a result, at a certain step of the iterative process we
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get an approximation to the SVD of the bidiagonal
matrix (1.3). Having the SVD, the Moore-Penrose
inverse of the matrix is computed (see [1; 4], for
instance).

The objective of the present work is to de-
velop a method which allows to deduce formulas
for the entries of the Moore-Penrose inverse of
upper bidiagonal matrices. The obtained closed
form solution to the Moore-Penrose inversion may
be considered as an alternative to sufficiently
labour-consuming Golub-Reinsch iterative proce-
dure briefly described in the Stage 2 of this sec-
tion. Moreover, explicit expressions for the entries
of the Moore-Penrose inverse lead to fairly simple
finite numerical algorithm with optimal volume of
computational expenditures.

Partition of a bidiagonal matrix into blocks

Let us consider a real n × n upper bidiagonal
matrix

A =


a11 a12

a22 a23 0
. . . . . .

0 an−1n−1 an−1n

ann

 .
(2.1)

Note that it suffices to consider square upper bidi-
agonal matrices since for rectangular upper bidi-
agonal matrices the problem can be easily reduced
to our case. Indeed, if m > n then according to
(1.3) we have the block structure[

A
0

]
,

where A is a square upper bidiagonal matrix of the
form (2.1). It can be seen that in this case[

A
0

]+
=
[
A+ 0T

]
.

We assume that the matrix A is singular, i.e.
a11a22 . . . ann = 0. Next, we assume that

ai i+1 6= 0, i = 1, 2, . . . , n− 1. (2.2)

Otherwise, if some of superdiagonal entries of the
matrix A are equal to zero, the problem of comput-
ing the Moore-Penrose inverse is decomposed into
several similar problems for bidiagonal matrices of
lower order.

To compute the Moore-Penrose inverse of the
matrix A, we apply a special partition of this ma-
trix into blocks. The partitioning procedure uses
the arrangement of zeros on the main diagonal
of the matrix. We distinguish the following four
cases.

Case 1: a11 6= 0, ann 6= 0.
Let zero diagonal entries of the matrix A are

ai1 i1 , ai2 i2 , . . . , aip−1 ip−1
, where 1 < i1 < i2 <

< · · · < ip−1 < n and p > 1. We split the matrix
into blocks drawing dividing lines after the rows
i1 − 1, i2 − 1, . . . , ip−1 − 1 and after the columns
i1, i2, . . . , ip−1. As a result, the matrix (2.1) takes
a block diagonal form. The first and the last diag-
onal blocks are rectangular bidiagonal matrices of
the sizes (i1−1)×i1 and (n−ip−1+1)×(n−ip−1),
respectively, while the remaining blocks are square
lower bidiagonal matrices. As an illustration, a
pattern of the matrix (for n = 10), the partition-
ing procedure and resulting block diagonal struc-
ture are shown in Fig. 2.1 (stars represent nonzero
entries).

? ?
? ?
? ?

0 ?
0 ?
? ?
? ?

0 ?
? ?
?

? ?
? ?
? ?

?
?
? ?
? ?

?
? ?
?

Figure 2.1. Partition of the matrix (case 1).

Case 2: a11 = 0, ann 6= 0.
We allocate the first column of the matrix

A, as a separate zero block of the size n ×
× 1. Next, we partition the remaining subma-
trix into diagonal blocks as follows. If there are
other zero diagonal entries of the matrix A, say
ai1 i1 , ai2 i2 , . . . , aip−1 ip−1

, where 1 < i1 < i2 <
< · · · < ip−1 < n and p > 1, then the subma-
trix is subdivided according to the rule drscribed
in the Case 1. As an illustration, see a pattern
of the matrix given in Fig. 2.2 . The last diagonal
block of the submatrix is rectangular bidiagonal
matrix of the size (n− ip−1 + 1)× (n− ip−1); the
remaining diagonal blocks are square lower bidiag-
onal matrices. If there are no other zero diagonal
entries, except the first one, then the submatrix is
not subdivided.
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0 ?
? ?
? ?
? ?

0 ?
0 ?
? ?

0 ?
? ?
?

0

?
? ?
? ?
? ?

?
?
? ?

?
? ?
?

Figure 2.2. Partition of the matrix (case 2).

Case 3: a11 6= 0, ann = 0.

First, we allocate the last row of the matrix
A, as a separate zero block of the size 1 × n.
Next, we partition the remaining submatrix into
diagonal blocks using the same idea. If there are
other zero diagonal entries of the matrix A, say
ai1 i1 , ai2 i2 , . . . , aip−1 ip−1

, where 1 < i1 < i2 <
< · · · < ip−1 < n and p > 1, then the submatrix
is subdivided by the rule drscribed in the Case 1
(see a pattern of the matrix given in Fig. 2.3). The
first diagonal block of the submatrix is rectangu-
lar bidiagonal matrix of the size (i1 − 1) × i1; the
remaining diagonal blocks are square lower bidiag-
onal matrices. If there are no other zero diagonal
entries, except the last one, then the submatrix is
not subdivided.

? ?
? ?
? ?

0 ?
? ?

0 ?
0 ?
? ?
? ?

0

? ?
? ?
? ?

?
? ?

?
?
? ?
? ?

0

Figure 2.3. Partition of the matrix (case 3).

Case 4: a11 = 0, ann = 0.
The allocation of the first column and the last

row of the matrix A gives us three zero blocks of
the sizes (n − 1) × 1, 1 × (n − 1) and 1 × 1 (see
Fig. 2.4). Then we partition the remaining subma-
trix. If there are other zero diagonal entries of the
matrix A, say ai1 i1 , ai2 i2 , . . . , aip−1 ip−1

, where 1 <
< i1 < i2 < · · · < ip−1 < n and p > 1, then the
submatrix is subdivided by the rule drscribed in
the Case 1. The diagonal blocks of this subdivi-
sion are square lower bidiagonal matrices. If there
are no other zero diagonal entries except the first
and last, then the submatrix is not subdivided.

0 ?
? ?

0 ?
? ?
? ?

0 ?
0 ?
? ?
? ?

0

0

0

?
? ?

?
? ?
? ?

?
?
? ?
? ?

0

Figure 2.4. Partition of the matrix (case 4).

Thus we have four principal cases of block par-
titioning the initial upper bidiagonal matrix A,
schematically presented in Fig. 2.5.
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A =

case 1

B1

B2

Bp

·· ·

A =

case 2

B1

B2

Bp

·· ·
0

A =

case 3

B1

B2

Bp

·· ·

0

A =

case 4

B1

B2

Bp

·· ·
0

00

Figure 2.5. The cases of block partitioning.

Accordingly, the Moore-Penrose inverse also
has a block structure, as shown in Fig. 2.6.

A+ =

case 1

B+
1

B+
2

B+
p

·· ·

A+ =

case 2

B+
1

B+
2

B+
p

·· ·

0

A+ =

case 3

B+
1

B+
2

B+
p

·· ·

0

A+ =

case 4

B+
1

B+
2

B+
p

·· ·

0

0

0

Figure 2.6. The structure of the Moore-Penrose
inverse.
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Summarizing the previous reasoning, we con-
clude that our task is to find the Moore-Penrose
inverses for blocks of the following three types:

type 1 : bidiagonal block of a size m×m;
type 2 : bidiagonal block of a size m− 1×m;
type 3 : bidiagonal block of a size m×m− 1.

In Fig. 2.7 we schematically give the types of di-
agonal blocks (the mark ? stands for a nonzero
entry).

?
? ?

? ?
. . . . . .

? ?

type 1

? ?
? ?

. . . . . .
? ?

type 2

?
? ?

?
. . .
. . . ?

?

type 3

Figure 2.7. The types of diagonal blockfs.

It is necessary to pay attention to the follow-
ing circumstance. As follows from the process of
partitioning the initial matrix (2.1) into blocks, in
each of the Cases 1-4 we have at most two rect-
angular blocks (of size m− 1×m or m×m− 1).
The remaining blocks are square lower bidiagonal
matrices. As an illustration, see Fig. 2.5.

Computing the Moore-Penrose inverse for a
block of the type 1 is not difficult. Consider a
square matrix

B =


d1
b1 d2

. . . . . .
bm−1 dm

 , (2.3)

where di 6= 0, i = 1, 2, . . . ,m and bi 6= 0, i =
= 1, 2, . . . ,m−1 (we choose new notation for block
entries). Since the matrix (2.3) is nonsingular then
B+ = B−1 (see [1], for instance). This inverse can
be easily found.

Proposition 1. The entries of the matrix B+ =
= [zij ]m×m are as follows: for the indices i =
= 1, 2, . . . ,m we have

zij = (−1)i+j 1

di

i−1∏
s=j

rs, j = 1, 2, . . . , i− 1;

zii = 1
di

;

zij = 0, j = i+ 1, i+ 2, . . . ,m,
(2.4)

where

rs ≡
bs
ds
, s = 1, 2, . . . ,m− 1. (2.5)

Based on the formulas (2.4) we can write the
following simple procedure to calculate the entries
of the matrix B+.

Algorithm (B⇒ B+)/type 1
1. Compute the quantities rs defined in (2.5).
2. Compute the lower triangular part of the

matrix B+. For indices i = 1, 2, . . . ,m:

zii =
1

di
; zij = −rjzi j+1, j = i− 1, i− 2, . . . , 1.

End algorithm
It can be readily seen that Algorithm

(B⇒ B+)/type 1 requires

A(1)
ops =

1

2
m2 +O(m) (2.6)

arithmetical operations.
Next, we will focus our attention on computing

the Moore-Penrose inverse for the blocks of type 2
and 3.

A way of computing the Moore-Penrose
inverse

To solve the problem, in this section we outline
an approach based upon the well-known equality

A+ = lim
ε→+0

(ATA+ εI)−1AT , (3.1)

where I is the identity matrix, which holds true
for any real matrix (see [1; 4], for instance). Here
we present the main ideas to compute the Moore-
Penrose inverse for a block of the type 2. For a
block of the type 3, as will be seen below, the
problem is reduced to the case under considera-
tion. Note that, as in the previous case, it is con-
venient to introduce new notation for the entries
of the block.

Let us have an m− 1×m bidiagonal matrix

B =


d1 b1

d2 b2
. . . . . .

dm−2 bm−2
dm−1 bm−1

 ,
(3.2)
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where bi, di 6= 0, i = 1, 2, . . . ,m − 1 and m ≥ 2.
The matrix

L(ε) ≡ BTB + εI (3.3)

is tridiagonal matrix of the following structure:

L(ε) =


d21 + ε b1d1
b1d1 d22 + b21 + ε b2d2 0

. . . . . . . . .
0 bm−2dm−2 d2m−1 + b2m−2 + ε bm−1dm−1

bm−1dm−1 b2m−1 + ε

 . (3.4)

To invert this matrix, let us apply advantage of
the algorithm developed in [5]. Consider a nonsin-
gular symmetric tridiagonal matrix

C =


c11 c12
c21 c22 c23 0

. . . . . . . . .
0 cm−1m−2 cm−1m−1 cm−1m

cmm−1 cmm

 .
(3.5)

We assume that m ≥ 2. Referring to [5], the ma-
trix C−1 = [xij ]m×m can be obtained by the fol-
lowing computational procedure.

Procedure 3d/inv (C ⇒ C−1)
1. Compute the quantities fi (i = 2, 3, . . . ,m),
gi (i = 2, 3, . . . ,m− 1)

and hi (i = 1, 2, . . . ,m− 1):

fi =
cii
ci i−1

, gi =
ci i+1

ci i−1
, hi =

cii
ci i+1

. (3.6)

Note: if m = 2, then the quantities
gi are not introduced.

2. Compute recursively the quantities µi (i =
= 1, 2, . . . ,m):

µm = 1 , µm−1 = −fm ,

µi = −fi+1µi+1 − gi+1µi+2 ,
i = m− 2,m− 3, . . . , 1.

(3.7)

3. Compute recursively the quantities νi (i =
= 1, 2, . . . ,m):

ν1 = 1 , ν2 = −h1 ,

νi = −hi−1νi−1 −
1

gi−1
νi−2 , i = 3, 4, . . . ,m.

(3.8)
4. Compute the quantity

t = (c11µ1 + c12µ2)−1 . (3.9)

Note: since C is nonsingular matrix,
then c11µ1 + c12µ2 6= 0 [5].

5. The entries of the upper triangular part of
the matrix C−1 are computed:

xij = µjνit, i = 1, 2, . . . , j ; j = 1, 2, . . . ,m .
(3.10)

6. The entries of the lower triangular part of
the matrix C−1 are found:

xij = xji, i = j + 1, j + 2, . . . ,m ;

j = 1, 2, . . . ,m− 1 . (3.11)

End procedure
The proposed way to obtain the Moore-Penrose

inverse B+ is as follows. In consistence with equal-
ity (3.1) and notation (3.3), we have

B+ = lim
ε→+0

L(ε)
−1
BT . (3.12)

Finding first the inverse matrix L(ε)
−1, the entries

of the matrix L(ε)
−1
BT are calculated and a char-

acter of their dependence on the parameter ε is
revealed. Then, according to the equality (3.12),
passing to the limit when ε → +0, we arrive to a
closed form expressions for the entries of the ma-
trix B+.

The Moore-Penrose inverse of rectangular
blocks

Let us consider as the matrix C from (3.5) the
tridiagonal matrix L(ε) obtained in (3.4). Com-
paring the records of these matrices, we have

cii = d2i + b2i−1 + ε , i = 1, 2, . . . ,m (4.1)

(in order to unify records of formulas, we set b0 =
= 0) and

ci i+1 = bidi , i = 1, 2, . . . ,m− 1 ;

ci i−1 = bi−1di−1 , i = 2, 3, . . . ,m . (4.2)

In accordance with our plan, let us carry out
a more detailed analysis of the quantities succes-
sively computed in the procedure 3d/inv from
Section 3.

Consider first the quantities fi, gi and hi which
were introduced in (3.6). Using the expressions
(4.1) and (4.2), we get

fi =
◦
f i +αiε , i = 2, 3, . . . ,m,

where
◦
f i=

d2i + b2i−1
bi−1di−1

, αi =
1

bi−1di−1
; (4.3)
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gi =
bidi

bi−1di−1
, i = 2, 3, . . . ,m− 1; (4.4)

hi =
◦
hi +βiε , i = 1, 2, . . . ,m− 1,

where
◦
hi=

d2i + b2i−1
bidi

, βi =
1

bidi
. (4.5)

Next, go to the quantities µi and νi recursively
defined in (3.7) and (3.8), respectively.
Lemma 2. The quantities µi are represented as

µm =
◦
µm +γmε , µm−1 =

◦
µm−1 +γm−1ε ,

µi =
◦
µi +γiε+O(ε2) , 1 ≤ i ≤ m− 2 ,

(4.6)

where the quantities
◦
µi and γi satisfy the following

recurrence relations:
◦
µm= 1 ,

◦
µm−1= −

◦
fm ,

◦
µi= −

◦
f i+1

◦
µi+1 −gi+1

◦
µi+2 ,

i = m− 2,m− 3, . . . , 1

(4.7)

and

γm = 0 , γm−1 = −αm ,

γi = −
◦
f i+1 γi+1 − gi+1γi+2 − αi+1

◦
µi+1 ,

i = m− 2,m− 3, . . . , 1.
(4.8)

Proof. Since µm = 1 then in (4.6) we set
◦
µm=

= 1, γm = 0. Further, µm−1 = −fm (see (3.7)).
According to the expressions (4.3) we have fm =

=
◦
fm +αmε. Therefore in the representation (4.6)

we set
◦
µm−1= −

◦
fm, γm−1 = −αm.

For the indices in the range 1 ≤ i ≤ m − 2,
required representations can be readily derived by
induction from the relations (3.7) using expressions
(4.3). Indeed, having done simple transformations
as follows

µi = −fi+1µi+1 − gi+1µi+2

= −(
◦
f i+1 +αi+1ε)(

◦
µi+1 +γi+1ε+O(ε2))

−gi+1(
◦
µi+2 +γi+2ε+O(ε2))

= (−
◦
f i+1

◦
µi+1 −gi+1

◦
µi+2)

+(−
◦
f i+1 γi+1 − gi+1γi+2 − αi+1

◦
µi+1)ε

+O(ε2) ,

we get (4.6) as well as recurrence relations (4.7)
and (4.8). 2

The quantities
◦
µi computed by the recursion

(4.7) can be represented in closed form.
Let us introduce the following notation:

rs ≡
bs
ds
, s = 1, 2, . . . ,m− 1 . (4.9)

Additionally, we set r0 = rm = 1.

Lemma 3. The quantities
◦
µi can be written in

the form

◦
µi= (−1)m−i

m−1∏
s=i

rs , i = 1, 2, . . . ,m. (4.10)

Proof. Firstly, the value
◦
µm= 1 conforms to

the record (4.10). Then, in accordance with (4.3)
and (4.7),

◦
µm−1= −

◦
fm= − bm−1

dm−1
= −rm−1 .

Further reasoning is carried out by induction. Us-
ing the expressions (4.3) and (4.4), proceeding
from (4.7) we obtain

◦
µi = −

d2i+1 + b2i
bidi

(−1)m−i−1
m−1∏
s=i+1

rs

−bi+1di+1

bidi
(−1)m−i−2

m−1∏
s=i+2

rs

= (−1)m−i
m−1∏
s=i+2

rs

(
d2i+1 + b2i
bidi

ri+1 −
bi+1di+1

bidi

)

= (−1)m−i
m−1∏
s=i

ri ,

which completes the proof. 2

The next assertion is a simple consequence of
the formula (4.10).
Corollary 4. The following relation holds:

◦
µi= −ri

◦
µi+1 , i = 1, 2, . . . ,m− 1 . (4.11)

A representation similar to (4.6) takes place
also for the quantities νi.
Lemma 5. The quantities νi are represented as

ν1 =
◦
ν1 +δ1ε , ν2 =

◦
ν2 +δ2ε ,

νi =
◦
νi +δiε+O(ε2) , 3 ≤ i ≤ m,

(4.12)

where the quantities
◦
νi and δi satisfy the following

recurrence relations:

◦
ν1= 1 ,

◦
ν2= −

◦
h1 ,

◦
νi= −

◦
hi−1

◦
νi−1 −

1

gi−1

◦
νi−2 , i = 3, 4, . . . ,m

(4.13)
and

δ1 = 0 , δ2 = −β1 ,

δi = −
◦
hi−1 δi−1 −

1

gi−1
δi−2 − βi−1

◦
νi−1 ,

i = 3, 4, . . . ,m.
(4.14)
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Proof. Since ν1 = 1 then in (4.12) we set
◦
ν1= 1,

δ1 = 0. Further, ν2 = −h1 (see (3.8)). Accord-

ing to the expressions (4.5) we have h1 =
◦
h1 +β1ε.

Therefore in the representation (4.12) we set
◦
ν2=

= −
◦
h1, δ2 = −β1.

For the indices in the range 3 ≤ i ≤ m, re-
quired representations can be readily derived by
induction from the relations (3.8) using expressions
(4.5). Indeed, having done simple transformations
as follows

νi = −hi−1νi−1 −
1

gi−1
νi−2

= −(
◦
hi−1 +βi−1ε)(

◦
νi−1 +δi−1ε+O(ε2))

− 1
gi−1

(
◦
νi−2 +δi−2ε+O(ε2))

= (−
◦
hi−1

◦
νi−1 −

1

gi−1

◦
νi−2)

+(−
◦
hi−1 δi−1 − 1

gi−1
δi−2 − βi−1

◦
νi−1)ε

+O(ε2) ,

we get (4.12) as well as recurrence relations (4.13)
and (4.14). 2

We can write closed form expressions for the
quantities

◦
νi as well.

Lemma 6. The quantities
◦
νi can be written in

the form

◦
νi= (−1)i+1

i−1∏
s=1

1

rs
, i = 1, 2, . . . ,m. (4.15)

Proof. The value
◦
ν1= 1 conforms to the record

(4.15). Then in accordance with (4.5) and (4.13),

◦
ν2= −

◦
h1= −d1

b1
= − 1

r1
.

Further reasoning is carried out by induction. Tak-
ing into account the expressions (4.4), (4.5) and
using (4.13) we get

◦
νi = −

◦
hi−1

◦
νi−1 −

1

gi−1

◦
νi−2

= −
d2i−1 + b2i−2
bi−1di−1

(−1)i
i−2∏
s=1

1

rs

− bi−2di−2

bi−1di−1
(−1)i−1

∏i−3
s=1

1
rs

= (−1)i+1

(
d2i−1 + b2i−2
bi−1di−1

1

ri−2
− bi−2di−2
bi−1di−1

)
·
∏i−3

s=1
1
rs

= (−1)i+1 1

ri−2

1

ri−1

i−3∏
s=1

1

rs
= (−1)i+1

i−1∏
s=1

1

ri
,

which completes the proof. 2

The next assertion is a simple consequence of
the formula (4.15).

Corollary 7. The following relation holds:
◦
νi+1= − 1

ri

◦
νi , i = 1, 2, . . . ,m− 1 . (4.16)

Our next task is to derive an expression for the
quantity t given in (3.9), depending on the param-
eter ε. Since c11 = d21+ε, c12 = b1d1 (see (4.1) and
(4.2)) then taking into account the representations
(4.6) for the quantities µi we get

t = ((d21 + ε)(
◦
µ1 +γ1ε+O(ε2))

+b1d1(
◦
µ2 +γ2ε+O(ε2)))−1

= (d21(
◦
µ1 +r1

◦
µ2)

+(
◦
µ1 +d1(γ1d1 + γ2b1))ε+O(ε2))−1.

By virtue of the relation (4.11),
◦
µ1 +r1

◦
µ2= 0.

Thus

t =
1

(
◦
µ1 +d1(γ1d1 + γ2b1))ε+O(ε2)

. (4.17)

Having the representations for the quantities
µi, νi and t, by formulas (3.10) and (3.11) we get
the entries of the inverse matrix

L(ε)
−1

= [xij ]m×m .

Further, let us introduce the matrix

Y (ε) ≡ L(ε)
−1
BT . (4.18)

According to the equality (3.1) and notation (3.3),
B+ = lim

ε→+0
Y (ε). If

B+ = [zij ]m×m−1 , Y (ε) = [yij(ε)]m×m−1

then
zij = lim

ε→+0
yij(ε),

i = 1, 2, . . . ,m , j = 1, 2, . . . ,m− 1. (4.19)

As follows from (4.18), the entries of the matrix
Y (ε) are calculated by the rule

yij(ε) = xijdj + xi j+1bj . (4.20)

Subject to the formulas (3.10) and (3.11), for a
fixed index j in the range 1 ≤ j ≤ m − 1 we con-
sider separately two cases: i = 1, 2, . . . , j and i =
= j + 1, j + 2, . . . ,m.
• Indices i = 1, 2, . . . , j.
Taking the expression (3.10) for the entries xij ,

from (4.20) we can write

yij(ε) = tνi(µjdj + µj+1bj). (4.21)

Then, using the representations (4.6) of the quan-
tities µi, we have

µjdj + µj+1bj = (
◦
µj +γjε+O(ε2))dj

+(
◦
µj+1 +γj+1ε+O(ε2))bj

= (
◦
µj dj+

◦
µj+1 bj)

+(γjdj + γj+1bj)ε+O(ε2).
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As follows from the relation (4.11),

◦
µj dj+

◦
µj+1 bj = dj(

◦
µj +rj

◦
µj+1) = 0.

Thus

µjdj +µj+1bj = (γjdj + γj+1bj)ε+O(ε2). (4.22)

Substituting the expression (4.22) as well as the
representations (4.12) and (4.17) of the quantities
νi and t, respectively, into the right hand side of
the equality (4.21) yields

yij(ε) =

◦
νi (γjdj + γj+1bj) +O(ε)
◦
µ1 +d1(γ1d1 + γ2b1) +O(ε)

.

By taking limit in the previous equality, according
to (4.19) we find

zij =

◦
νi (γjdj + γj+1bj)
◦
µ1 +d1(γ1d1 + γ2b1)

, i = 1, 2, . . . , j .

Further, let us introduce the notation

uj ≡ γjdj + γj+1bj , j = 1, 2, . . . ,m− 1 . (4.23)

Then the entries zij can be written as follows:

zij =

◦
νi uj
q

, i = 1, 2, . . . , j , (4.24)

where
q ≡

◦
µ1 +d1u1 . (4.25)

Now let us turn to the quantities uj defined in
(4.23). For the index j = m− 1, using the expres-
sions (4.8) and (4.3), we have

um−1 = γm−1dm−1+γmbm−1 = −αmdm−1 = − 1

bm−1
.

(4.26)
For the indices j = m− 2,m− 3, . . . , 1, taking the
expressions (4.8), (4.3) and (4.4), we get

γjdj = (−
◦
f j+1 γj+1 − gj+1γj+2 − αj+1

◦
µj+1)dj

= −
d2j+1 + b2j
bjdj

γj+1dj −
bj+1dj+1

bjdj
γj+2dj

− 1
bjdj

◦
µj+1 dj

= −γj+1bj −
d2j+1

bj
γj+1

− bj+1dj+1

bj
γj+2 − 1

bj

◦
µj+1

= −γj+1bj −
dj+1

bj
(γj+1dj+1 + γj+2bj+1)

− 1
bj

◦
µj+1 .

Hence

γjdj+γj+1bj = −dj+1

bj
(γj+1dj+1+γj+2bj+1)− 1

bj

◦
µj+1 .

With regard of the notation (4.23) we arrive at the
equality

uj = −dj+1

bj
uj+1 −

1

bj

◦
µj+1 . (4.27)

Summarizing the above considerations, on the ba-
sis of the obtained equalities (4.26) and (4.27), we
can state that the quantities uj satisfy the follow-
ing relations:

um−1 = − 1

bm−1
,

uj = −dj+1uj+1+
◦
µj+1

bj
,

j = m− 2,m− 3, . . . , 1 .

(4.28)

The quantities uj can be represented in closed
form as well. Namely, the following statement
holds.
Lemma 8. The quantities uj are written as

uj =
(−1)m−j

dj

m−j∑
k=1

m−k∏
s=j

1

rs

( m−1∏
s=m−k+1

rs

)
,

j = 1, 2, . . . ,m− 1 . (4.29)

The assertion can be proven by direct substitut-
ing the expression (4.29) into the relations (4.28)
and using the expression (4.10) for the quantities
◦
µj .

As a direct consequence of the expressions
(4.10) and (4.29) we get the expression for the
quantity q defined in (4.25).
Lemma 9. The quantity q is written as

q = (−1)m−1
m∑

k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

)
.

(4.30)
Finally, let us replace the expressions (4.15),

(4.29) and (4.30) of the quantities
◦
νi, uj and q, re-

spectively, into (4.24). As a result, we obtain the
following expression for the entries of the upper
triangular part of the matrix B+:

zij =

(−1)i+j

m−j∑
k=1

m−k∏
s=j

1

rs

( m−1∏
s=m−k+1

rs

)
i−1∏
s=1

rs · dj
m∑

k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ,

i = 1, 2, . . . , j . (4.31)

• Indices i = j + 1, j + 2, . . . ,m.
Using the expressions (3.10) and (3.11), from

(4.20) we get the equality

yij(ε) = tµi(νjdj + νj+1bj). (4.32)
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In accordance with the representations (4.12) we
have

νjdj + νj+1bj = (
◦
νj +δjε+O(ε2))dj

+(
◦
νj+1 +δj+1ε+O(ε2))bj

= (
◦
νj dj+

◦
νj+1 bj)

+(δjdj + δj+1bj)ε+O(ε2).

As follows from the relation (4.16),
◦
νj dj+

◦
νj+1 bj = dj(

◦
νj +rj

◦
νj+1) = 0.

Thus

νjdj + νj+1bj = (δjdj + δj+1bj)ε+O(ε2). (4.33)

Substituting the expression (4.33) as well as the
representations (4.6) and (4.17) of the quantities
µi and t, respectively, into the right hand side of
the equality (4.32) yields

yij(ε) =

◦
µi (δjdj + δj+1bj) +O(ε)
◦
µ1 +d1(γ1d1 + γ2b1) +O(ε)

.

By taking limit in this equality, when ε → +0,
according to (4.19) we find

zij =

◦
µi (δjdj + δj+1bj)
◦
µ1 +d1(γ1d1 + γ2b1)

, i = j+1, j+2, . . . ,m .

Similarly to the previous case, we introduce the
notation

wj ≡ δjdj + δj+1bj , j = 1, 2, . . . ,m− 1 . (4.34)

Then the entries zij can be written as follows:

zij =

◦
µi wj

q
, i = j + 1, j + 2, . . . ,m . (4.35)

Consider the quantities wj defined in (4.34).
For the index j = 1, using the expressions (4.14)
and (4.5), we have

w1 = δ1d1 + δ2b1 = −β1b1 = − 1

d1
. (4.36)

For the indices j = 2, 3, . . . ,m − 1, taking the ex-
pressions (4.14), (4.4) and (4.5) yields

δj+1bj = (−
◦
hj δj −

1

gj
δj−1 − βj

◦
νj)bj

= −
d2j + b2j−1
bjdj

δjbj −
bj−1dj−1
bjdj

δj−1bj

− 1
bjdj

◦
νj bj

= −δjdj −
b2j−1
dj

δj −
bj−1dj−1

dj
δj−1

− 1
dj

◦
νj

= −δjdj −
bj−1
dj

(δjbj−1 + δj−1dj−1)

− 1
dj

◦
νj .

Hence

δjdj+δj+1bj = −bj−1
dj

(δj−1dj−1+δjbj−1)− 1

dj

◦
νj .

In accordance with notation (4.34) we get the
equality

wj = −bj−1
dj

wj−1 −
1

dj

◦
νj . (4.37)

Summing up the above considerations, on the ba-
sis of the equalities (4.36) and (4.37), we infer that
the quantities wj satisfy the following relations:

w1 = − 1

d1
,

wj = −bj−1wj−1+
◦
νj

dj
, j = 2, 3, . . . ,m− 1 .

(4.38)

As with uj , the quantities wj can be repre-
sented in closed form. The following statement
holds.
Lemma 10. The quantities wj are written as

wj =
(−1)j

dj

j∑
k=1

(
k−1∏
s=1

1

rs

)(
j−1∏
s=k

rs

)
,

j = 1, 2, . . . ,m− 1 . (4.39)

The assertion can be proven by direct substi-
tution of the expression (4.39) into the relations
(4.38) and by using the expression (4.15) for the
quantities

◦
νj .

Finally, let us replace the expressions (4.10),
(4.39) and (4.30) of the quantities

◦
µi, wj and q,

respectively, into the equality (4.35). Resulting
formula for the entries of the lower triangular part
of the matrix B+ is of the following type:

zij =

(−1)i+j+1

(
m−1∏
s=i

rs

)
j∑

k=1

(
k−1∏
s=1

1

rs

)(
j−1∏
s=k

rs

)

dj

m∑
k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ,

i = j + 1, j + 2, . . . ,m . (4.40)

Combining the above considerations, i.e. hav-
ing the formulas (4.31) and (4.40), we arrive at the
following statement.
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Theorem 11. Let B be an m − 1 × m bidiago-
nal matrix given in (3.2). Then the entries of the
Moore-Penrose inverse B+ = [zij ]m×m−1 of this
matrix are as follows:

1) for indices j = 1, 2, . . . ,m − 1 and i =
= 1, 2, . . . , j:

zij =

(−1)i+j

m−j∑
k=1

m−k∏
s=j

1

rs

( m−1∏
s=m−k+1

rs

)
i−1∏
s=1

rs · dj
m∑

k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ;

(4.41)

2) for indices j = 1, 2, . . . ,m − 1 and i = j +
+ 1, j + 2, . . . ,m:

zij =

(−1)i+j+1

(
m−1∏
s=i

rs

)
j∑

k=1

(
k−1∏
s=1

1

rs

)(
j−1∏
s=k

rs

)

dj

m∑
k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ,

(4.42)
where the quantities rs are defined in (4.9).

Below is an example to illustrate Theorem 4.1.
Example 1. Consider m−1×m bidiagonal matrix

B =

 1 1
. . . . . .

1 1

 .
Calculations by the formulas (4.41) and (4.42) give
the following result:

zij =


(−1)i+j

(
1− j

m

)
, i = 1, 2, . . . , j ,

(−1)i+j+1 j

m
, i = j + 1, j + 2, . . . ,m

,

j = 1, 2, . . . ,m− 1 .

Thus in Theorem 4.1 we give formulas for the
entries of the Moore-Penrose inverse of a block of
the type 2. In addition, based on the expressions
and recurrence relations obtained in this section,
we suggest a numerical algorithm to compute the
entries of the matrix B+ = [zij ]m×m−1.

Algorithm (B⇒ B+)/type 2
1. Compute the quantities rs (see (4.9)):

rs =
bs
ds
, s = 1, 2, . . . ,m− 1 ; r0 = rm = 1 .

2. Compute the quantities
◦
µi (see (4.7),(4.11)):

◦
µm= 1 ;

◦
µi= −ri

◦
µi+1 , i = m− 1,m− 2, . . . , 1 .

3. Compute the quantities
◦
νi (see

(4.13),(4.16)):

◦
ν1= 1 ;

◦
νi+1= − 1

ri

◦
νi , i = 1, 2, . . . ,m− 1 .

4. Compute the quantities uj (see (4.28)):

um−1 = − 1

bm−1
;

uj = −dj+1uj+1+
◦
µj+1

bj
,

j = m− 2,m− 3, . . . , 1 .

5. Compute the quantities wj (see (4.38)):

w1 = − 1

d1
;

wj = −bj−1wj−1+
◦
νj

dj
,

j = 2, 3, . . . ,m− 1 .

6. Compute the quantity q (see (4.25)):

q =
◦
µ1 +d1u1 .

7. Compute the upper triangular part of the
matrix B+ (see (4.24)):

zij =

◦
νi uj
q

, i = 1, 2, . . . , j ; j = 1, 2, . . . ,m− 1 .

8. Compute the lower triangular part of the
matrix B+ (see (4.35)):

zij =

◦
µi wj

q
,

i = j + 1, j + 2, . . . ,m ;

j = 1, 2, . . . ,m− 1 .

End algorithm
Note that the numerical implementation of the

Algorithm (B⇒ B+)/type 2 requires

A(2)
ops = m2 +O(m) (4.43)

arithmetical operations.
Next consider a block of type 3. Let an m ×

×m− 1 bidiagonal matrix

B =



d1
b1 d2

b2
. . .
. . . dm−2

bm−2 dm−1
bm−1


(4.44)

be given, where bi, di 6= 0, i = 1, 2, . . . ,m − 1 and
m ≥ 2. The problem of finding the Moore-Penrose
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inverse of this matrix is reduced to the previous
case. Indeed, by virtue of the well-known property
(see [1], for instance) we have

B+ = ((BT )+)T , (4.45)

where the matrix BT is already a block of type 2
(compare (3.2) and (4.44)). Therefore as a conse-
quence of Theorem 4.1 we can formulate the fol-
lowing statement.
Theorem 12. Let B be an m × m − 1 bidiago-
nal matrix given in (4.44). Then the entries of the
Moore-Penrose inverse B+ = [zij ]m−1×m of this
matrix are as follows:

1) for indices i = 1, 2, . . . ,m − 1 and j =
= 1, 2, . . . , i:

zij =

(−1)i+j
m−i∑
k=1

(
m−k∏
s=i

1

rs

)(
m−1∏

s=m−k+1

rs

)
j−1∏
s=1

rs · di
m∑

k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ;

(4.46)
2) for indices i = 1, 2, . . . ,m − 1 and j = i +

+ 1, i+ 2, . . . ,m:

zij =

(−1)i+j+1

m−1∏
s=j

rs

 i∑
k=1

(
k−1∏
s=1

1

rs

)(
i−1∏
s=k

rs

)

di

m∑
k=1

(
m−k∏
s=1

1

rs

)(
m−1∏

s=m−k+1

rs

) ,

(4.47)
where the quantities rs are defined in (4.9).

Finally, with equality (4.45) in mind, we can
write the following numerical algorithm to com-
pute the entries of the matrix B+ = [zij ]m−1×m.

Algorithm (B⇒ B+)/type 3
1. Use Algorithm (BT ⇒ (BT)+)/type 2 to

compute the matrix (BT )+.
2. Calculate B+ = ((BT )+)T .
End algorithm
As an obvious consequence of (4.43), we state

that Algorithm (B⇒ B+)/type 3 also requires

A(3)
ops = m2 +O(m) (4.48)

arithmetical operations.
So based on the above study we can formulate

the following statement.
Proposition 13. Let a singular upper bidiago-
nal matrix A given in (2.1), with nonzero super-
diagonal entries, be represented in the block form,
according to the rule described in the Section 2
(Cases 1-4). These are blocks Bk, k = 1, 2, . . . , p
(see Fig. 2.5, as an illustration). Then depend-
ing on the type of a block the entries of the blocks
B+

k in block representation of the matrix A+ (see
Fig. 2.6, as an illustration) are calculated by the
formulas obtained in Proposition 2.1 ((2.4) and
(2.5)), Theorem 4.1 ((4.41) and (4.42)) or The-
orem 4.2 ((4.46) and (4.47)).

To compute the Moore-Penrose inverse A+, we
have developed numerical procedures as well.
Proposition 14. The entries of the blocks
B+

k , k = 1, 2, . . . , p, included in the block
structure of the matrix A+ (see Fig. 2.6) can
be calculated by Algorithm (B⇒ B+)/type 1,
Algorithm (B⇒ B+)/type 2 or Algorithm
(B⇒ B+)/type 3, with expenditure of arithmeti-
cal operations estimated in (2.6), (4.43) or (4.48),
correspondingly.

Below we give an example to illustrate the work
of the numerical algorithms.
Example 2. Consider a matrix, which is divided
into blocks as follows:

A =



2 5
3 −7

0 6
4 2

−5 −1

0 4

0 2
3 −4

−6 3
8


.

Applying the above algorithms, we get the follow-
ing result, which coincides with the computations
done with MATLAB.

A+ =



0.0796 −0.0206
0.1682 0.0082
0.0721 −0.1393

0.1667 0.0000 0.0000
−0.3333 0.5000 0.0000
1.6667 −2.5000 −1.0000

0.2500
0.2006 0.1996 −0.1331 0.0499
0.0506 −0.0337 −0.1442 0.0541
0.0125 −0.0083 0.0055 0.1229


.

Conclusion

In the work we obtained both explicit formu-
las and finite numerical algorithm to compute the



Yu. Hakopian. Computing the Moore-Penrose inverse for bidiagonal matrices 23

Moore-Penrose inverse of bidiagonal matrices. We
emphasize the following important feature of the
numerical algorithm. Proceeding from the struc-
ture of the blocks Bk, k = 1, 2, . . . , p, in the
block representation of the matrix A+ (namely, the
presence of zeros located at predetermined places)
and the estimations of the number of arithmeti-
cal operations required to compute each block B+

k

(see (2.6), (4.43) and (4.48)), we can assert that
for computing one nonzero entry of the matrix
A+ asymptotically one arithmetical operation is
expended. Thereby the proposed computational
method can be considered as optimal. What is
more, we point out another important property of
the computational algorithm. The blocks B+

k are
computed independently of each other.
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Акопян Ю. Р.

ОБЧИСЛЕННЯ ОБЕРНЕНОГО ВIДОБРАЖЕННЯ
МУРА–ПЕНРОУЗА ДЛЯ ДВУДIАГОНАЛЬНИХ

МАТРИЦЬ

Обернене вiдображення Мура–Пенроуза є найбiльш поширеним вiдображенням, що використо-
вується для пошуку оберненої матрицi. Це вiдображення має численнi застосування як у теорiї
матриць, так i в обчислювальнiй лiнiйнiй алгебрi. Вiдомо, що обернена матриця Мура–Пенроуза
може бути отримана через сингулярний розклад. Найефективнiший з iснуючих алгоритмiв скла-
дається з двох крокiв. На першому кроцi, використовуючи вiдображення Хаусхолдера, початкова
матриця зводиться до верхнього двудiагонального вигляду (алгоритм Голуба–Кахана). Другий
крок вiдомий у науковiй лiтературi як алгоритм Голуба–Райнша. Ця iтерацiйна процедура за
допомогою методу Гiвенса генерує послiдовнiсть двудiагональних матриць, яка збiгається до дiа-
гонального вигляду. В такий спосiб отримується iтерацiйне наближення до сингулярного розкладу
двудiагональної матрицi. Головною метою цiєї статтi є розробка методу, який можна розглядати
як альтернативну замiну алгоритму Голуба–Райнша. За допомогою реалiзацiї запропонованого,
було отримано два головнi результати. По-перше, виведено явнi формули для елементiв обернених
матриць Мура–Пенроуза для двудiагональних матриць. По-друге, використовуючи цi формули,
побудовано скiнченний рекурсивний алгоритм, оптимальної обчислювальної складностi. Таким
чином, запропоновано варiант обчислення оберненої матрицi Мура–Пенроуза для двудiагональ-
них матриць, що не використовує сингулярний розклад.

Ключовi слова: псевдообернення Мура–Пенроуза, двудiагональна матриця, формула обер-
нення, рекурсивний алгоритм.
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