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GENERALIZATION OF CROSS-ENTROPY LOSS

FUNCTION FOR IMAGE CLASSIFICATION

Classification task is one of the most common tasks in machine learning. This supervised learning

problem consists in assigning each input to one of a finite number of discrete categories. Classification

task appears naturally in numerous applications, such as medical image processing, speech recognition,

maintenance systems, accident detection, autonomous driving etc.

In the last decade methods of deep learning have proven to be extremely efficient in multiple machine

learning problems, including classification. Whereas the neural network architecture might depend a lot

on data type and restrictions posed by the nature of the problem (for example, real-time applications),

the process of its training (i.e. finding model’s parameters) is almost always presented as loss function

optimization problem.

Cross-entropy is a loss function often used for multiclass classification problems, as it allows to

achieve high accuracy results.

Here we propose to use a generalized version of this loss based on Renyi divergence and entropy. We

remark that in case of binary labels proposed generalization is reduced to cross-entropy, thus we work

in the context of soft labels. Specifically, we consider a problem of image classification being solved by

application of convolution neural networks with mixup regularizer. The latter expands the training set

by taking convex combination of pairs of data samples and corresponding labels. Consequently, labels

are no longer binary (corresponding to single class), but have a form of vector of probabilities. In such

settings cross-entropy and proposed generalization with Renyi divergence and entropy are distinct, and

their comparison makes sense.

To measure effectiveness of the proposed loss function we consider image classification problem on

benchmark CIFAR-10 dataset. This dataset consists of 60000 images belonging to 10 classes, where

images are color and have the size of 32⇥32. Training set consists of 50000 images, and the test set

contains 10000 images.

For the convolution neural network, we follow [1] where the same classification task was studied with

respect to different loss functions and consider the same neural network architecture in order to obtain

comparable results.

Experiments demonstrate superiority of the proposed method over cross-entropy for loss function

parameter value ↵ < 1. For parameter value ↵ > 1 proposed method shows worse results than cross-

entropy loss function. Finally, parameter value ↵ = 1 corresponds to cross-entropy.

Keywords: loss function, image classification, Renyi entropy, Renyi divergence.

Introduction

In recent years, deep learning methods have
been showing steady success in various areas of
applications, such as computer vision, natural lan-
guage processing, autonomous driving etc. This
success can be attributed to high performance of
deep learning models in comparison to other meth-
ods, notably for unstructured data, such as images
or text. Naturally, a big part of research com-
munity effort is aimed at the model performance
improvement.

Introduction of new loss functions can often
lead to model qualities amelioration. For ex-
ample, focal loss [2] allows to effectively address
the object-background inbalance in object detector
training. Center loss [3], when used with the soft-

max loss to jointly supervise the learning of CNNs,
can highly enhance the discriminative power of the
deeply learned features for robust face recognition.
Large-margin softmax loss [3] explicitly encourages
intra-class compactness and inter-class separability
between learned features in classification problem.

In our work we propose the use of Renyi en-
tropy and divergence as a loss function for classifi-
cation problem. While with one-hot encoding for
target class Renyi entropy and divergence are sim-
ply equivalent to cross-entropy, for soft labels it’s
not the case anymore. More specifically, we con-
sider data with non-binary labels obtained with
mixup data augmentation method, proposed re-
cently in the context of computer vision tasks.

To study the efficiency of the proposed loss
function we conduct experiment on CIFAR-10
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dataset [4]. We follow the experiment outline given
in [1], where a number of different loss functions
were compared in the context of image classifi-
cation problem. We discover that Renyi cross-
entropy and Renyi divergence with parameter ↵ <
< 1 lead to higher validation accuracy then cross-
entropy.

The paper is organized as follows. We start
with an overview of the related work. The follow-
ing section describes the proposed method. Next,
experiments and their results are presented. Fi-
nally, we conclude the paper the paper with sum-
marizing statements.

Related work

Renyi divergence and entropy. An exten-
sive work [5] is dedicated to the overview and ex-
tension of Renyi divergence properties. Those in-
clude convexity, continuity, limits of �-algebras,
a generalization of the Pythagorean inequality to
general orders. A number of results on relation-
ships between Renyi divergence, Kullback-Leibler
divergence and Chernoff information in hypothesis
testing have been obtained.

An interesting application to computer vision
problems was studied in [6], where Bhattacharyya
distance (i.e. exponent of Renyi divergence with
↵ = 1

2 ) was used for vehicle tracking and counting.
Spevifically, Bhattacharyya distance was applied
to matching vehicles detected in different frames.

In a recent work of [7] a new loss function for
generative adversarial networks (GANs) was pro-
posed. In particular, the loss function for gener-
ator network was based on Renyi cross-entropy.
The authors have shown the advantages of pro-
posed method in comparison to baseline in terms
of generated images quality and training stability.

A shifted version of Renyi entropy was pro-
posed in [8]. In such formulation the definition
becomes aligned with Hölder mean: r -th Hölder
mean is the inverse of r -th Renyi entropy expo-
nent. The properties of shifted Renyi entropy and
its relations to different weighted power means are
studied.

Paper [9] provides solution to the problem of
Renyi divergence minimization. Properties of the
corresponding functional are analyzed, and specific
distribution cases are studies in detail. Addition-
ally, a comprehensive overview of Renyi divergence
applications was made.

Loss functions. A survey of loss functions
used in machine learning is provided by [10]. In to-
tal, 31 loss functions are analyzed with respect to
their purpose task and application scenario. This
work presents both classical machine learning and
deep learning standing points.

In paper [1] comparison of loss functions with
application to image classification task is done.
While cross-entropy remains the most common
choice for this type of problem, authors demon-
strate efficiency of loss functions that are usually
reserved for regression tasks, in particular L1 and
L2 losses. They continue with the analysis of loss
function influence on the model training and final
model characteristics, such as robustness to input
and target noise.

Methodology

Renyi divergence and cross-entropy. Al-
fred Renyi defined divergence, or rather a spec-
trum of divergence measures that generalize the
Kullback–Leibler divergence in [11]. The Renyi di-
vergence of order ↵ or the a distribution P from a
distribution Q is defined as follows [11]:

D↵(P ||Q) =
1

↵� 1
log

nX

i=1

p↵
i
q1�↵

i
(1)

where ↵ is a positive parameter (not equal to 1),
pi is the value of the probability distribution P
for i = 1, 2, ..., n, qi is the value of the probability
distribution Q for i = 1, 2, ..., n.

The Renyi entropy is defined [11] as

H↵(P ) =
1

1� ↵
log

nX

i=1

p↵
i

(2)

Cross-entropy (or Kullback–Leibler cross-
entropy) is a combination of the Shannon entropy
of the distribution P and the Kullback–Leibler
divergence between P and Q. Having that defini-
tion of cross-entropy, the Renyi cross-entropy can
be determined by analogy. The Renyi entropy is
reduced to the Shannon entropy when the value
of the parameter ↵ goes to 1, just as the Renyi
divergence are reduced to the Kullback–Leibler di-
vergence when the value of the parameter ↵ goes
to 1.

That is, the Renyi cross-entropy can be defined
as follows:

H↵(P,Q) = H↵(P ) +D↵(P,Q) (3)

where H↵(P ) is the Renyi entropy, D↵(P,Q) is the
Renyi divergence.

Substituting in the above formula 3 the Renyi
entropy and Renyi divergence 1, we have the fol-
lowing definition:

H↵(P,Q) =
1

1� ↵
log

P
n

i=1 p
↵

i
q1�↵

iP
n

i=1 p
↵
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(4)

where ↵ is a positive parameter (not equal to 1),
pi is the value of the probability distribution P
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for i = 1, 2, ..., n, qi is the value of the probability
distribution Q for i = 1, 2, ..., n.

We remark that originally the Renyi cross-
entropy proposed by Alfred Renyi [11] has the fol-
lowing definition:

Hor

↵
(P,Q) =

1

1� ↵
log

nX

i=1

piq
↵�1
i

. (5)

In the experiments, both definitions were tested,
with the emphasize on the first one.

Mixup. It should be noted that Renyi diver-
gence and cross-entropy are reduced to Shannon
cross-entropy if the distribution P is concentrated
at one point, i.e. has the distribution vector of the
form (0, . . . , 0, 1, 0, . . . 0). However, this is the com-
mon setting of classification task, where the true
class of an instance is usually one-hot encoded.

To escape this scenario, we use mixup technique
[12], where linear combinations of images and cor-
responding classes are used in training. When con-
sidering “mixed” images during the training of a
neural network, the corresponding “true” probabil-
ity distribution P is be concentrated at one point
anymore (for example, for 10 classes problem it
may look like (0, 0, 0.7, 0.3, 0, 0, 0, 0, 0, 0)). Due to
this, the Renyi divergence and cross-entropy are
not reduced to cross-entropy.

As a general comment, the fact that Renyi
cross-entropy and Renyi divergence are reduced to
cross-entropy at a certain value of the parameter
↵ allows to assume that the use of Renyi cross-
entropy and Renyi divergence as a loss function for
the image classification problem will give no worse
results than cross-entropy (which is a most com-
mon loss function choice for this type of problem
problems) and may improve the results by inves-
tigating loss functions with different values of the
parameter ↵.

Convolutional Neural Network. Convolu-
tional Neural Networks (CNN) is a special type of
neural network for processing grid-type data, such
as images (2D grid), videos (3D grid) or time series
(1D grid). The basic architectural ideas of a CNN
[13] consist of the local receptive fields via the con-
volution operation and the spatial sub-sampling
via the pooling operation. The convolution op-
eration can be formally written as:

fC,l

x,y,k
= wl

k

T

fOp,l�1
x,y

+ bl
k

(6)

where wl

k
and bl

k
are the weights and bias of

the kth feature map, fOp,l�1 and fC,l

x,y,k
are the in-

put and output feature maps, l denotes the layer
and (x, y) is the spatial image coordinate. The
superscript C denotes convolution and Op repre-
sents various operations, e.g., input (when l = 1),
convolution, pooling, activation, etc.

Pooling applies local operations, e.g., comput-
ing the maximum within a local neighborhood has
the following form:

fPmax,l

x,y,k
= max(m,n)2Nx,y

(fOp,l�1
m,n,k

) (7)

where Nx,y denotes the local spatial neighbor-
hood and Pmax denotes the max pooling. Often
a spatial resolution reduction is applied after the
max-pooling operation.

Besides the two above-mentioned operations,
there are several strategies applied within the CNN
models, such as non-linear activation (e.g., the
Rectified Linear Unit (ReLU) [14]), dropout [15]
and batch normalization [16]. A Fully Connected
(FC) layer, can be added at the end of the con-
catenated layers. It takes all nodes (neurons) from
the feature maps of the previous layer as input and
connects it to every nodes (neurons) of the output
feature map.

On the last dense layer of the CNN model (re-
ferred to as the prediction layer), it is common to
apply the Softmax activation function defined as
follows:

Softmax =
exp (zj)P
K

k=1 exp (zk)
(8)

where K denotes the number of training sam-
ples.

Experiments

Dataset. The experiments were performed for
the CIFAR-10 dataset [17], a popular dataset that
is widely used in machine learning tasks. It con-
sists of 60000 32x32 color images, the images are
divided into 10 different classes - “airplane”, “auto-
mobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,
“ship”, “truck”. Each class contains 6,000 images,
and the entire dataset is divided into 50,000 train-
ing images and 10,000 test images. Image classes
are completely independent. There are no overlap
between “automobile” and “truck”. “Automobile”
includes sedans, SUVs, etc. “Truck” includes only
large trucks. Neither the “automobile” class nor
the “truck” class includes pickups.

CNN architecture. For the CNN architec-
ture we follow [1], where different loss functions
were examined in application to the same image
classification problem (CIFAR-10). This gives us
an opportunity to compare the results of their work
with our experiments.

Namely, the CNN used in experiments con-
sists of three convolutional layers, each of a size
of 5x5 and 64 filters, with ReLU activation func-
tion, batch-normalization and pooling operations
between them. After the first layer max pooling
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was used, and average pooling after the next two,
all with kernel 3x3, stride 2. The convolutional
block is followed by a single fully connected layer
with 128 neurons, ReLU activation, and the last
softmax layer with 10 neurons. Both fully con-
nected and softmax layer are preceded by dropout
layers with dropout probability 0.125.

Training settings. The training lasted for
100 epochs. As an optimizer stochastic gradient
descent (SGD) was used. Learning rate was de-
creasing from 0.01 to 0.001 with cosine learning
rate scheduler [18]. For data augmentation, we
apply width and height shift of maximum 5 pix-
els, horizontal flip, and random channel shift of
range 10%. Finally, as mentioned before, we apply
mixup [12], which results in convex combinations
of images their labels. This serves both as reg-
ularization technique, and allows us to use Renyi
cross-entropy and divergence as a loss function due
to the presence of soft labels.

Loss functions and parameters. As loss
functions for the experiments were used Renyi di-
vergence (eq. 1) and Renyi cross-entropy (eq. 4)
with different parameters ↵. The following ↵ val-
ues were considered: 0.01, 0.1, 0.3, 0.5, 0.7, 0.9,
1, 1.5, 2, 3, 5, 10. We remind that Renyi cross-
entropy and Renyi divergence coincides with Shan-
non cross-entropy when the parameter ↵ = 1.

Results and discussions

Figure 1 shows the graphs of learning evalua-
tion of neural network models with different alpha
parameters based on training data - accuracy and
losses. Figure 2 shows the same indicators but on
the test data. Only several values of ↵ are pre-
sented in order to make graphs more readable.

Evaluation of the obtained models. Over-
all, the loss and accuracy graphs look good, be-
cause there are no signs of overfitting or underfit-
ting (Figure 1, Figure 2). There is a gap between
the training and test graph lines. Test graphs have
higher accuracy and lower losses compared to the
training graphs. This can be explained by use of
regularizers, such as dropout and mixup.

The set of alpha parameters can be roughly
generalized by dividing into two parts: when al-
pha is less than one and when alpha is greater than
one.

The results of the experiment show that the
accuracy at smaller values of the alpha is slightly
higher than the accuracy at higher alpha values,
this can also be seen in Figure 1 and Figure 2.
Moreover, the best result can be obtained with the
value ↵ = 0.3, when the the accuracy reached al-
most 86% on the test dataset. However, it should
be noted that there is no strong gap between the

values of ↵ < 1, the accuracy of the model ranges
from 1-2%. The model that used Renyi divergence
with the value ↵ = 10 proved to be the worst. The
trend of accuracy with increasing alpha value is
declining. When the ↵ = 10, the accuracy reached
about 81%, that is 5% less than the accuracy where
↵ = 0.3.

Figure 1. A line plot of model accuracy and loss on
the training data with different values of ↵ for Renyi

divergence.

Figure 2. A line plot of model accuracy and loss on
the test data with different values of ↵ for Renyi

divergence.

In addition, three more experiments were per-
formed for the ↵ = 0.3 and for plain cross-entropy
to exclude the chance of randomness in accuracy
difference. Figure shows graphs of average accu-
racy and loss for test data.
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Figure 3. The results of the repeated experiments
with cross-entropy and Renyi divergence with

parameter ↵ = 0.3

As a result of additional experiments, the av-
erage accuracy of models with the ↵ = 0.3 was
84.1%. In contrast, the average accuracy of mod-
els with cross-entropy was 82.4%. The repeated
experiments have shown consistent improvement
over baseline with an average margin of + 1.7%,
which likely eliminates the influence of chance on
the results of the tests.

Comparison of experimental results with
the baseline. The results can also be compared
with the results reported in [1], where the authors
considered different loss functions in similar exper-
iment setting.

Figure 4. Comparative graphs with three images
mixup and two images mixup for the value of the

Renyi divergence parameter ↵ = 0.7.

The authors took 100 thousands iterations of
100 images, which corresponds to 200 epochs of

the CIFAR-10 dataset with 50 thousand images.
For our experiments 100 epochs were taken, due
to limited computational resources. However, this
does not prevent from comparing the results, al-
though if another 100 epochs had been held, the
results would have been somewhat better. The au-
thors reported that the best results were achieved
with L2 and higher-order hinge losses, accuracy
reached about 80%, slightly lower with Cauchy-
Schwartz divergence, and even lower with log loss
(cross-entropy). In particular, for the latter the the
accuracy on the test dataset reached 78%, which
is 6.1% lower than the results obtained during our
experiments. One of plausible reasons of accuracy
difference on the test set for cross-entropy with re-
spect to the results reported in baseline source is
the usage of mixup regularization method.

Figure 5. Comparative graphs with three images
mixup and two images mixup for the cross-entropy.

Experiments with mixup using three im-
ages. Using Renyi divergence as loss function
with a mixup as a prerequisite showed quite confi-
dent improvements of the model accuracy. For the
mixup, we considered convex combinations of two
images being “mixed”. In terms of divergence, we
moved from the “true” distribution concentrated in
one point to the distribution concentrated in two
points. It is logical to ask a question whether us-
ing more images for the mixup is going to change
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the model performance. For this purpose, we con-
ducted an experiment with three images in mixup.

Two models were trained with Renyi divergence
with parameter ↵ = 0.7, one with mixup of two
images (plain mixup) and one with the mixup of
three images. Comparative graphs can be seen in
Figure 4 and Figure 5, respectively.

For mixup with the three images, the results
were slightly worse than simple mixup. This may
be since the new sample turned out to be “noisier”
for the model, and therefore it was harder to learn
and had greater losses.

For cross-entropy, the result of a mixup with
three images can be interpreted in the same way as
for the Renyi divergence. The results were slightly
worse than the results with plain mixup.

Figure 6. Training and test accuracy and loss values
corresponding to the model training with Renyi

cross-entropy for different values of ↵.

Experiments with Renyi cross-entropy.
Experiments were also performed for Renyi cross-
entropy with the following values of the alpha:
0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1 (cross-entropy), 2.
For experiments, was used the definition of Renyi
cross-entropy made as extension of cross-entropy

definition (eq. (4)). Original definition of Renyi
cross-entropy (eq. (5)) was also tested, however,
no improvement was achieved.

Figure 6 shows graphs of accuracy and loss dur-
ing training on a training dataset and a testing
dataset.

The experiment showed that for the model with
Renyi entropy the results are almost indistinguish-
able from the result with Renyi divergence. Sim-
ilarly, smaller values of the alpha parameter lead
to a more accurate model of the neural network,
larger alphas have yield less accuracy.

The accuracy of models trained with ↵ < 1 is
almost identical, but it is greater than the accuracy
of the model trained with cross-entropy. Com-
pared with the literature [1], we also observe su-
periority of obtained results with values of ↵ < 1
over other loss functions.

Conclusions

In this work we have proposed to use Renyi di-
vergence and Renyi cross-entropy as a loss function
for classification task with soft labels that general-
izes cross-entropy. For experimental part, an im-
age classification task (CIFAR-10) was considered,
with mixup regularization as a source of soft labels.

Experiments have demonstrated that the pro-
posed method of solving the image classification
problem gives improvement with respect to the
baseline and competitive loss functions [1]. The
results showed that models trained with alpha val-
ues that are less than one have greater accuracy
w.r.t cross-entropy and lower loss, whereas larger
values of alpha lead to less accurate model. The
optimal value of parameter alpha remains an open
question.

An additional experiment was also conducted
to investigate how the performance of the model
would change if mixup is done not with two but
with three images. The result showed that mixing
up three images negatively affects the training of
the model with respect to the option with two im-
ages, which is aligned with the observations of the
original mixup paper [12] for cross-entropy.

The choice of the loss function in the image
classification problem has a crucial influence on the
model accuracy and obtained experimental results
attest to this statement. There are more suitable
loss functions than the conventional ones, which,
like the proposed method, may improve the learn-
ing of neural network models, thus this topic re-
mains relevant and open for further research.
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Андреєва В. П., Швай Н. О.

УЗАГАЛЬНЕННЯ ПЕРЕХРЕСНОЇ ЕНТРОПIЇ ЯК

ФУНКЦIЇ ВТРАТ У ЗАДАЧАХ КЛАСИФIКАЦIЇ

ЗОБРАЖЕНЬ

Задача класифiкацiї є однiєю з найпоширенiших задач машинного навчання. Ця задача навча-
ння з вчителем полягає у зiставленнi кожному вхiдному елементу однiєї з скiнченної кiлькостi
дискретних категорiй.

Задача класифiкацiї виникає природним чином у численних застосуваннях, таких як оброб-
ка медичних зображень, розпiзнавання мовлення, системи технiчного обслуговування, виявлення
аварiйних ситуацiй, автономне водiння тощо. За останнє десятилiття методи глибокого навчання
виявились надзвичайно ефективними для багатьох задач машинного навчання, зокрема класифi-
кацiї. У той час як архiтектура нейронної мережi може багато в чому залежати вiд типу даних
та обмежень, що породжуються природою задачi (наприклад, застосування моделi у реальному
часi), процес її навчання (тобто пошук параметрiв моделi) майже завжди представляється як
оптимiзацiя функцiї втрат.

У задачах класифiкацiї з багатьма класами у ролi функцiї втрат часто виступає перехресна
ентропiя, оскiльки вона дає змогу досягти високої точностi.

У цiй роботi ми пропонуємо використовувати узагальнену версiю цiєї функцiї втрат, а саме роз-
ходження та ентропiю Реньї. Зазначимо, що у випадку бiнарних мiток таке узагальнення зводиться
до перехресної ентропiї, тому нас буде цiкавити саме контекст м’яких мiток. Бiльш конкретно, ми
розглядаємо проблему класифiкацiї зображень, що розв’язується iз застосуванням згорткових ней-
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ронних мереж та mixup регуляризацiї. Остання полягає у розширеннi тренувального набору даних
шляхом опуклих комбiнацiй пар елементiв та вiдповiдних мiток. Вiдповiдно, отриманi мiтки не є
бiнарними (що вiдповiдає строгiй належностi до одного класу), а мають вигляд вектора ймовiрно-
стей. За таких умов перехресна ентропiя та дивергенцiя i ентропiя Реньї вiдрiзняються, i їх можна
порiвняти мiж собою.

Для вимiрювання ефективностi запропонованої функцiї втрат ми розглядаємо проблему кла-
сифiкацiї зображень на наборi даних CIFAR-10. Цей набiр складається з 60 000 зображень, що
належать до 10 класiв, де зображення є кольоровими та мають розмiр 32⇥32. Навчальний набiр
складається з 50 000 зображень, а тестовий набiр мiстить 10 000 зображень.

Архiтектуру згорткової нейронної мережi було обрано вiдповiдно до [1], де була розглянута
та сама задача класифiкацiї з метою порiвняння функцiй втрат, з метою отримання порiвнянних
результатiв.

Експерименти демонструють перевагу запропонованого методу над перехресною ентропiєю для
значення параметра функцiї втрат ↵ < 1. Для значення параметра ↵ > 1 запропонований метод
показує гiршi результати, нiж функцiя перехресної ентропiї. Нарештi, значення параметра ↵ = 1
вiдповiдає перехреснiй ентропiї.

Ключовi слова: функцiя втрат, задача класифiкацiї зображень, ентропiя Реньї, розходження
Реньї.
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