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RISK MODELLING APPROACHES FOR STUDENT-LIKE
MODELS WITH FRACTAL ACTIVITY TIME

The paper focuses on value at risk (V@R) measuring for Student-like models of markets with fractal
activity time (FAT). The fractal activity time models were introduced by Heyde to try to encompass the
empirically found characteristics of real data and elaborated on for Variance Gamma, normal inverse
Gaussian and skewed Student distributions. But problem of evaluating an value at risk for this model
was not researched. It is worth to mention that if we use normal or symmetric Student`s models than
V@R can be computed using standard statistical packages. For calculating V@R for Student-like models
we need Monte Carlo method and the iterative scheme for simulating N scenarios of stock prices. We
model stock prices as a di�usion processes with the fractal activity time and for modeling increments
of fractal activity time we use another di�usion process, which has a given marginal inverse gamma
distribution.

The aim of the paper is to perform and compare V@R Monte Carlo approach and Markowitz approach
for Student-like models in terms of portfolio risk. For this purpose we propose procedure of calculating
V@R for two types of investor portfolios. The �rst one is uniform portfolio, where d assets are equally
distributed. The second is optimal Markowitz portfolio, for which variance of return is the smallest out
of all other portfolios with the same mean return.

The programmed model which was built using R-statistics can be used as to the simulations for any
asset and for construct optimal portfolios for any given amount of assets and then can be used for
understanding how this optimal portfolio behaves compared to other portfolios for Student-like models of
markets with fractal activity time.

Also we present numerical results for evaluating V@R for both types of investor portfolio. We show
that optimal Markovitz portfolio demonstrates in the most of cases the smallest possible Value at Risk
comparing with other portfolios. Thus, for making investor decisions under uncertainty we recommend
to apply portfolio optimization and value at risk approach jointly.

Keywords: Value at Risk, Student distribution, Monte-Carlo method, Fractal Activity Time model,
Optimal portfolio.

Introduction

Making decisions under uncertainty is a com-
plex and important problem, which one can face
in di�erent spheres, particularly in the area of in-
vestments, where participants strive to gain the
desired level of income and protect themselves
against losses. For the control of potential losses
was proposed the using of the value at risk (V@R)
monetary risk measure by the regulations Basel I
and Basel II.

For a given portfolio, time horizon T , and prob-
ability p, the V@R of level p can be de�ned infor-
mally as the maximum possible loss during that
time after we exclude all worse outcomes whose
combined probability is at most p. More formally,
V@R is de�ned such that the probability of a loss
greater than V@R is (at most) p while the prob-
ability of a loss less than V@R is (at least) 1− p.
Common parameters for standard V@R are 1%
and 5% probabilities and one day and two-week

horizons, although other combinations are in use.

V@R can be estimated either parametri-
cally (for example, variance-covariance V@R in
Markowitz) or nonparametrically (for examples,
historical simulation V@R or root-�nding algo-
ritms V@R in Ivanov). A McKinsey report pub-
lished in May 2012 estimated that 85% of large
banks were using historical simulation. The other
15% used Monte Carlo methods. For the using of
Monte Carlo method we need to make some as-
sumptions about models which we choose for the
risky factors.

The paper focuses on value at risk measuring
for Student-like models of markets with fractal ac-
tivity time. The fractal activity time model was
introduced by Heyde (1999) to try to encompass
the empirically found characteristics of real data
and elaborated on for Variance Gamma, normal
inverse Gaussian and skewed Student distributions
[1; 2; 8]. If we use normal or symmetric Student`s
models than V@R can be computed using stan-
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dard statistical packages. For calculating V@R
for model proposed in [2; 8] we need Monte Carlo
method and the iterative scheme for simulating N
scenarios of stock prices.

In this paper we consider the simulations for
each asset and for some investor portfolios built out
of them: uniform portfolio as the one where N as-
sets are equally distributed and optimal Markowitz
portfolio as the one, variance of which return is the
smallest out of all other portfolios with the same
mean return. Notice, that comparison of V@R
and Markowitz e�cient frontier approaches were
discussed in [3], where for applying Monte Carlo
method was chosen GBM.

The paper is organized as follows. In Section
2 we remain formal de�nition of probability func-
tional V@R for risk measuring and consider the
main steps in a basic Monte Carlo approach to
V@R estimating.

In Section 3 we discuss the assumptions about
market data, which are necessary for performing
of �rst step of Monte Carlo method. For this aim
we describe time-changed processes for Student-
like models with depends. This section is based
on the papers [2], [8], [9], [10], [11] where models
of the generalized di�usion process with "market"
time are presented and discussed.

In Section 4 we use the iterative scheme for sim-
ulating N scenarios of stock prices for our model,
which was proposed in [6]. We model market time
increments as a di�usion processes with a given
marginal inverse gamma distribution.

In Section 5 we propose procedure of calculat-
ing V@R for di�erent types of investor portfolio.

In Section 6 we present numerical results for
evaluating V@R for both types of investor portfo-
lio.

Monte-Carlo Method for evaluating Value

at Risk

Let S is a vector of risk factors, ∆t is V@R
horizon (one day or two weeks), ∆S is a change
of risk factors over ∆t, Y is a loss in portfolio
value resulting from change ∆S over ∆t The loss
Y is the di�erence between the current value of the
portfolio and the portfolio value at the end of the
V@R horizon ∆t if the risk factors move from S
to S+∆S.

Reducing the variance of random variable (re-
turn on asset/portfolio) leads to minimization of
losses, however, it also leads to minimization of
income. Therefore we need to introduce such a
metric, which would encounter only bad e�ects of
risks, and which will not encounter the positive
properties of risks (e.g unexpected income).

Probability functionals have been objects of

many theoretical and empirical investigations of
risk measuring. For background on probability
(risk) functionals see P�ug [5] (2005), for instance.
For a seminal work on axiomatic de�nitions for risk
functionals see Artzner et al (1999).

Let us recall the de�nition of probability (risk)
functional V@R of level α.

Let (Ω, F, P ) be the probability space and sup-
pose for p ∈ [1,+∞) a linear space L(p) of real
valued random variables

Y : Ω→ R1

such that E(|Y |p) <∞ is de�ned on it.
Definition. The value-at-risk of level

α, 0 < α ≤ 1

for random variable Y ∈ L(p) is a probability func-
tional, de�ned as α-quantile of the pro�t (loss)
function

V@Rα(Y ) = G−1(α) = inf{ y ∈ R : G(Y ) ≥ α} ,
(1)

where G is the distribution function of Y ∈ L(p),
G−1 is the quantile function of α, 0 < α ≤ 1.

In general, even though the distribution func-
tion G may fail to possess a left or right inverse,
the quantile function G−1 behaves as an "almost
sure left inverse" for the distribution function, in
the sense that

G−1(G(Y )) = Y (2)

almost surely.
Often it is recommended (for examples by reg-

ulators Basel I and Basel II) to denote V@R as the
low quantile with minus sign [7]:

V@Rα(Y ) = −G−1(α) (3)

For evaluating V@R there are some meth-
ods. V@R can be estimated either parametri-
cally (for example, variance-covariance V@R) or
nonparametrically (for examples, historical simu-
lation V@R or resampled V@R). A McKinsey re-
port published in May 2012 estimated that 85%
of large banks were using historical simulation and
the other 15% used Monte Carlo methods. The
main steps in a basic Monte Carlo approach to es-
timating loss probabilities are as follows:

1. Generate N scenarios by sampling changes
in risk factors ∆S(1),..., ∆S(N) over horizon ∆t.

2. Revalue portfolio at end of horizon ∆t in
scenarios

S + ∆S(1), ..., S + ∆S(N);

determine losses Y (1), .., Y (N) by subtracting
revaluation in each scenario from current portfo-
lio value; build the empirical distribution function
G(Y ).
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3. Find a quantile (3) of given probability α.

The �rst step requires some assumptions about
market data. These assumptions are being consid-
ered in the next section.

Student-like models with fractal activity

time

Let us consider the market, which consists of
a risk- free bond with price Bt and risky stocks
with price St. Price of the bond evolves according
to formula for continuous rates. The price of the
underlying traded asset St is a strong solution of
the following stochastic di�erential equation [2]:

dSt = µStdt+ (θ + σ2/2)StdTt + σStdWTt , t ≥ 0,
(4)

where Tt, t ≥ 0, is a random time change
or fractal activity time, that is positive non-
decreasing process such that T0 = 0, andWt, t ≥ 0,
is a standard Brownian motion independent of the
process Tt. The meaning of the coe�cients before
dt, dT , and dWt, you can �nd in [11]. This model
di�ers from the previous one in that the Brown-
ian motion does not depend on the usual calendar
time, but on some random process Tt, otherwise,
from market time. Market time is a positive non-
descending stochastic process with stationary in-
crease that are subordinated to the gamma-inverse
distribution. The idea of using "market" time is in-
tuitively correct, because the change in stock prices
occurs randomly, rather than at certain points in
time.

The fractal activity time model was introduced
by Heyde (1999) to try to encompass the empiri-
cally found characteristics of real data and elab-
orated on for Variance Gamma, normal inverse
Gaussian and skewed Student distributions [1; 2].
In paper [2; 8], we considered two constructions of
activity time. The �rst construction is based on re-
ciprocal gamma di�usion type processes and leads
to stationary returns with exact Student marginal
distribution. The second construction uses a su-
perposition of two reciprocal gamma di�usion type
processes and leads to Student-like marginal distri-
bution.

The increments over unit time are

τt = Tt − Tt−1, t = 1, 2, . . .

and the returns are given by

Xt = log

(
St
St−1

)
∼ µ+ θτt + στ

1
2
t W1, (5)

where ∼ denotes equality in distribution.

If increments τt ∼ RΓ
(
ν
2 ,

δ2

2

)
, with PDF

fRΓ(x) =

(
δ2

2

) ν
2

Γ
(
ν
2

) x− ν
2−1e−

δ2

2x , x > 0 (6)

then assuming θ = 0 and σ = 1, the log returns
Xt is stationary process with marginal Student
T (µ, δ, ν) distribution

fSt(x) =
Γ(ν+1

2 )

δ
√
πΓ(ν2 )

1

[1 + (x−µδ )2]
ν+1
2

, ∈ R, (7)

where µ ∈ R is a location parameter, δ > 0 is a
scaling parameter, ν > 0 is a tail index.

If θ 6= 0 and σ 6= 0, then returns are skewed
Student distributed.

After choosing model for risk factors we need
simulating (generating) N scenarios for this model
over time horizon.

Simulating for Student-like models with

fractal activity time

For simulating N scenarios for Student-like
models with fractal activity time over time hori-
zon we proposed the following iterative scheme [6],
which follows from (4):

xk+1 = xk+µxk4 t+(θ+
δ2

2
)xkτk+σ

√
τkεk (8)

where µ, σ and θ are constants, which can be found
from historical data; ε - white noise with normal
standard distribution, and τ is a stationary process
of active time, with inverse gamma distribution,
which was modeled earlier (see [2], [8], [9], [10]).

Now we need to construct a iterative scheme
for stochastic di�usion process τt with a given
marginal gamma-inverse density:

f =
βα

Γ(α)
x−α−1e−β/x. (9)

where α = δ2

2 ; β = v
2 .

Using Bibby's article[4] and our paper [10] the
process τt can be determined by the equation:

dτ = −θ
(
τ − v

δ2 − 2

)
dt+

√
4θ

δ2 − 2
τ2dW, (10)

where θ - coe�cient of the autocorrelation func-
tion.

From (10) we can easily build an iterative
scheme:

τk+1 = τk − θ
(
x− v

δ2 − 2

)
4t+

√
4θ

δ2 − 2
τ24tεk

(11)
Thus, for simulating we use iterative scheme

(8), where τt can be generated by (11).
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Procedure of �nding V@R for some kinds

of investor portfolios

Now we discuss procedure of �nding V@R for
two types of portfolios x = (x1, ..., xd), where xi
denotes the fraction of asset i in this collection.
The �rst one is uniform portfolio, where d assets
are equally distributed. The second is optimal
portfolio, where variance of which return is the
smallest out of all other portfolios with the same
mean return. It seems reasonable that the portfo-
lio with the same average return, but lower risks of
loses should be "better" for pro�t-seeking investor.

Therefore according Markovitz approach, the
portfolio will be called optimal if it has the small-
est possible variance under �xed expected value of
its returns. Optimal portfolios can be analyzed in
a mean-variance framework if the returns on the
assets are jointly elliptically distributed, including
the special case in which they are jointly normally
distributed.

Under mean-variance analysis, it can be shown
that every minimum-variance portfolio given a par-
ticular expected return (that is, every e�cient
portfolio) can be formed as a combination of any
two e�cient portfolios.

Formally, given x = (x1, x2, ...xd) is the distri-
bution of our funds among assets 1 to d we need:

σ2
x → min (12)

subject to:

µx =

d∑
i=1

µixi = r, (13)

d∑
i=1

xi = 1. (14)

This problem (12)-(14) of solving conditional
extremum problem can be reduced to uncondi-
tional extremum problem using Lagrange multi-
plier method and Lagrangian function is written
in the form:

L (x1, . . . , xd, u, v) =
∑d
i=1

∑d
j=1 σ

2
ijxixj−

−v ×
[∑d

i=1 µixi − r
]
− u×

[∑d
i=1 xi − 1

]
,

(15)
where σ2

ij is covariance of assets i and j, µi is
a mean return on asset i, r - targeted mean return
of a portfolio.

Thus the procedure includes the �nding covari-
ance matrix σ2

ij of assets i and j, building the op-
timal portfolio, applying iterative scheme for gen-
erating N scenarios by sampling changes in risk

factors ∆S(1),..., ∆S(N) over horizon ∆t, deter-
mining losses Y (1), .., Y (N) by subtracting revalu-
ation in each scenario from current portfolio value;
building the empirical distribution function G(Y )
and �nding a quantile for given probability α.

Numerical results

In this section, numerical results between his-
torical simulation and Monte-Carlo simulation for
investor optimal portfolio and the portfolio with
uniform distribution of stocks are demonstrated.

We took three assets for illustrating our ap-
proaches:
Asset 1 - Facebook shares
Assets 2- Boeing shares
Asset 3 - Goldman Sacks shares
and considered two di�erent portfolios: uniform,
where

x = (1/3, 1/3, 1/3),

and optimal

x = (0.413, 0.225, 0.362),

which was built using Lagrange multiplier method.
We obtained the following values of Value at Risk
during monthly time interval and con�dence level
p = 0.95, which are presented in Table 1.

Table 1. Numerical V@R comparisons

Historical
Simula-
tion

Normal
Assump-
tion

Monte-
Carlo
FAT Sim-
ulation

Facebook -8.374 -9.054 -12.042
Boing -10.698 -10.652 -13.373
Goldman -10.461 -10.692 -12.420
Opt.Port. -8.082 -7.314 -8.940
Uniform
Port.

-8.111 -7.410 -9.467

Overall, the results show that the optimal port-
folio demonstrates the smallest possible Value at
Risk under di�erent probabilistic scenarios.

Conclusions

In this paper we propose procedure for V@R
evaluating by Monte Carlo method for Student-
like models with fractal activity time. We use
this method for some investor portfolios of risky
assets. We show that optimal Markovitz portfo-
lio demonstrates in the most of cases the smallest
possible Value at Risk comparing with other port-
folios. Thus, for making investor decisions under
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uncertainty we recommend to apply portfolio op-
timization and value at risk approach jointly.

However we have perspectives for further re-
search. It is interesting to �nd necessary and /or
su�cient conditions which provide smallest possi-

ble Value at Risk for optimal portfolio comparing
with other investor portfolios. The other problem
is to include some derivatives in investor portfolio.
Finally it is useful to apply the expected shortfall
risk measure.
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ÏIÄÕÎÄÈ ÄÎ ÌÎÄÅËÞÂÀÍÍß ÐÈÇÈÊÓ ÄËß
ÑÒÜÞÄÅÍÒ-ÏÎÄIÁÍÈÕ ÌÎÄÅËÅÉ IÇ ÔÐÀÊÒÀËÜÍÈÌ

ÀÊÒÈÂÍÈÌ ×ÀÑÎÌ

Ñòàòòþ ïðèñâÿ÷åíî ïðîáëåìi âèìiðþâàííÿ ðèçèêó (V@R) äëÿ Ñòüþäåíò ìîäåëåé ðèíêiâ
ç ôðàêòàëüíèì àêòèâíèì ÷àñîì, (FAT). Ìîäåëi ðèíêiâ ç ôðàêòàëüíèì àêòèâíèì ÷àñîì áóëè
ââåäåíi Õåéäå, ùîá ñïðîáóâàòè îõîïèòè åìïiðè÷íî çíàéäåíi õàðàêòåðèñòèêè ðåàëüíèõ äàíèõ i
ïîêðàùèòè íàÿâíi ìîäåëi. Öi ìîäåëi âæå áóëî äîñëiäæåíî äëÿ Variance Gamma ðîçïîäiëó, normal
inverse Gaussian ðîçïîäiëó i skewed Student ðîçïîäiëó. Ïðîòå ïðîáëåìè âèìiðþâàííÿ ðèçèêó â öèõ
ìîäåëÿõ íå áóëî äîñëiäæåíî. Âàðòî çàóâàæèòè, ÿêùî ìè âèêîðèñòîâó¹ìî ìîäåëi ç íîðìàëüíèì
ðîçïîäiëîì àáî ç ñèìåòðè÷íèì ðîçïîäiëîì Ñòüþäåíòà, òî V@R ìîæíà îá÷èñëèòè çà äîïîìîãîþ
ñòàíäàðòíèõ ñòàòèñòè÷íèõ ïàêåòiâ. Äëÿ ðîçðàõóíêó V@R äëÿ ìîäåëåé iç ñêîñîáî÷åíèì ðîçïî-
äiëîì Ñòüþäåíòà, íàì çíàäîáèòüñÿ ìåòîä Ìîíòå-Êàðëî òà iòåðàöiéíà ñõåìà äëÿ ìîäåëþâàííÿ
N ñöåíàði¨â öií àêöié. Ìè ìîäåëþ¹ìî öiíè àêöié ÿê ïðîöåñè äèôóçi¨ ç ôðàêòàëüíèì àêòèâíèì
÷àñîì, à äëÿ ìîäåëþâàííÿ ïðèðîñòiâ ïðîöåñó öüîãî íîâîãî ÷àñó ìè âèêîðèñòîâó¹ìî iíøèé ïðîöåñ
äèôóçi¨, ÿêèé ìà¹ çàäàíèé ãðàíè÷íèé çâîðîòíèé ãàììà-ðîçïîäië. Ìåòà ðîáîòè ïîëÿãà¹ ó çàñòî-
ñóâàííi òà ïîðiâíÿííi ìåòîäó Ìîíòå-Êàðëî äëÿ îá÷èñëåííÿ ìiðè ðèçèêó V@R òà ïiäõîäó Ìàðêî-
âiöà äëÿ ìîäåëåé òèïó Ñòüþäåíòà, ó òåðìiíàõ ïîðòôåëüíîãî ðèçèêó. Äëÿ öüîãî ìè ïðîïîíó¹ìî
ïðîöåäóðó ðîçðàõóíêó V@R äëÿ äâîõ òèïiâ ïîðòôåëiâ iíâåñòîðiâ. Ïåðøèé � îäíîðiäíèé ïîðò-
ôåëü, äå àêòèâè íà d ðîçïîäiëåíi ïîðiâíó. Äðóãèé � îïòèìàëüíèé ïîðòôåëü Ìàðêîâiöà, äëÿ ÿêîãî
äèñïåðñiÿ ïðèáóòêîâîñòi ¹ íàéìåíøîþ ç óñiõ iíøèõ ïîðòôåëiâ ç òàêîþ æ ñåðåäíüîþ ïðèáóòêîâi-
ñòþ. Çàïðîãðàìîâàíà ìîäåëü, ÿêà áóëà ïîáóäîâàíà ç âèêîðèñòàííÿì R-ñòàòèñòèêè, ìîæå áóòè
âèêîðèñòàíà äëÿ ìîäåëþâàííÿ äëÿ áóäü-ÿêîãî àêòèâó òà äëÿ ïîáóäîâè îïòèìàëüíèõ ïîðòôåëiâ
äëÿ áóäü-ÿêî¨ çàäàíî¨ êiëüêîñòi àêòèâiâ. Òàêîæ öþ ìîäåëü ìîæíà âèêîðèñòàòè, ùîá çðîçóìiòè,
ÿê öåé îïòèìàëüíèé ïîðòôåëü ïîâîäèòüñÿ ïîðiâíÿíî ç iíøèìè ïîðòôåëÿìè äëÿ ìîäåëåé òèïó
Ñòüþäåíòà íà ðèíêàõ ç ôðàêòàëüíèì ÷àñîì àêòèâíîñòi. Òàêîæ ìè íàâîäèìî ÷èñëîâi ðåçóëüòà-
òè äëÿ îöiíêè V@R äëÿ îáîõ òèïiâ ïîðòôåëÿ iíâåñòîðà. Ïîêàçàíî, ùî îïòèìàëüíèé ïîðòôåëü
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Ìàðêîâiöà äåìîíñòðó¹ â áiëüøîñòi âèïàäêiâ íàéìåíøó ìîæëèâó ìiðó ðèçèêó ïîðiâíÿíî ç iíøè-
ìè ïîðòôåëÿìè. Òàêèì ÷èíîì, äëÿ ïðèéíÿòòÿ ðiøåíü iíâåñòîðàìè â óìîâàõ íåâèçíà÷åíîñòi ìè
ðåêîìåíäó¹ìî ñïiëüíî çàñòîñîâóâàòè îïòèìiçàöiþ ïîðòôåëÿ òà ïiäõiä âèìiðþâàííÿ ðèçèêó.

Êëþ÷îâi ñëîâà: ìiðà ðèçèêó, ðîçïîäië Ñòüþäåíòà, Ìîíòå-Êàðëî ìåòîä, ìîäåëü ç àêòèâíèì
ôðàêòàëüíèì ÷àñîì, îïòèìàëüíèé ïîðòôåëü.
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