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TWO APPROACHES FOR OPTION PRICING UNDER

ILLIQUIDITY1

The paper focuses on option pricing under unusual behaviour of the market, when the price may not
be changed for some time what is quite a common situation on the modern �nancial markets. There are
some patterns that can cause permanent price gaps to form and lead to illiquidity. For example, global
changes that have a negative impact on �nancial activity, or a small number of market participants, or
the market is quite young and is just in the process of developing, etc.

In the paper discrete and continuous time approaches for modelling market with illiquidity and eval-
uation option pricing were considered.

Trinomial discrete time model improves upon the binomial model by allowing a stock price not only
to move up, down but stay the same with certain probabilities, what is a desirable feature for the illiquid
modelling. In the paper parameters for real �nancial data were identi�ed and the backward induction
algorithm for building call option price trinomial tree was applied.

Subdi�usive continuous time model allows successfully apply the physical models for describing the
trapping events to model �nancial data stagnation's periods. In this paper the Inverse Gaussian pro-
cess IG was proposed as a subordinator for the subdi�usive modelling of illiquidity and option pricing.
The simulation of the trajectories for subordinator, inverse subordinator and subdi�usive GBM were
performed. The Monte Carlo method for option evaluation was applied.

Our aim was not only to compare these two models each with other, but also to show that both models
adequately describe the illiquid market and can be used for option pricing on this market. For this
purpose absolute relative percentage (ARPE) and root mean squared error (RMSE) for both models were
computed and analysed.

Thanks to the proposed approaches, the investor gets a tools, which allows him to take into account
the illiquidity.

Keywords: subdi�usion models, subordinator, inverse subordinator, hitting time, trinomial tree
model.

Intoduction

Analysis of di�erent �nancial markets shows
that during global crises that have a negative im-
pact on �nancial activity we can observe some
kinds of risky assets which have the periods in their
dynamic without change. Such behavior is typical
for emerging markets with low number of transac-
tions, for interest rate markets and for commod-
ity markets. So for these markets the problem of
evaluating fair price of derivative instruments on
stocks have become extremely important.

The classical di�usion models for continuous
time like Black-Scholes-Merton (B-S) and its dis-
crete variant - binomial tree model of Cox-Ross-
Rubinstein (C-R-R) [2] are incapable of adequately
modelling illiquidity for real-life asset dynamic and
evaluate derivatives. This happens because classi-
cal binomial C-R-R model allows a stock price only
to move up or down and do not take into account

the stagnation periods. In benchmark B-S model
Brownian motions is perpetually moving and we
can not use it for modeling periods with motion-
less stock returns too.

In order to overcome this di�culty for discrete-
time approach was considered the trinomial tree
model. This model improves upon the binomial
model by allowing a stock price not only to move
up or down, but stay the same with certain proba-
bilities, what is a desirable properties for the illiq-
uid modelling.

For continuous-time approach one can notice,
that the constant periods of stagnation in �nancial
processes are analogous in nature to the trapping
events of the subdi�usive particle. Therefore, the
physical models of subdi�usion can be successfully
applied to describe �nancial data. See for exam-
ple paper [6], where option pricing was proposed in
fractional jumpâ��di�usion model, papers [7] for
Black-Scholes formula and [8], [14] for Bachelier
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model in subdi�usive regime.

The aim of the work was to consider two dif-
ferent approaches for modelling market with stag-
nation periods: to apply trinomial tree model and
propose IG prosess as a subordinator for subdi�u-
sive model.

The paper is organized as follows. In the next
section we remind what is trinomial tree model and
how we can apply it to �nd fair option price for real
historical data. This section is based on the papers
[1], [3], [4], [5], where di�erent types of trinomial
tree models are presented. We show how model
parameters for real �nancial data can be identi�ed
and the backward induction algorithm for building
call option price trinomial tree can be applied.

In the third section we consider IG process as
subordinator of subdi�usive GBM and its proper-
ties. The simulation of the trajectories for subordi-
nator, inverse subordinator and subdi�usive GBM
were performed. Also we describe Monte Carlo op-
tion pricing techniques for this case.

Forth section contents some numerical results
for real �nancial data, absolute relative percentage
(ARPE) and root mean squared errors (RMSE) for
both models and its comparison.

Trinomial tree for modelling of illiquidity

Trinomial tree parameters setting. As we
mentioned above, Ross-Cox-Rubinstein binomial
tree model [2] is incapable of adequately modelling
illiquidity for real-life asset dynamic and for evalu-
ating derivatives because this model allows a stock
price only to move up or down. A more advanced
model that can be used for describing of the stag-
nation's periods is the trinomial tree model. This
model based on the principle that the stock price
may move up, down, or stay the same with a cer-
tain probability. This rule is important for mod-
elling of the stagnation's periods.

The general form of the tree is as shown in the
Figure below.

Figure 1. Trinomial tree

Various types of trinomial trees have been pro-
posed in the literature for pricing �nancial deriva-
tives. See for examples, [3], [4], [5]. As with bi-
nomial trees, there is freedom to choose the pa-
rameters of a trinomial tree, depending upon what
characteristics one wishes to emphasize. For exam-
ple, one can attempt to match higher moments, or
attempt to obtain smooth convergence. The de-
scription of the trinomial model in this subsection
mostly is based on paper [3]. A trinomial tree is
characterized by the following parameters:

u - coe�cient of price increase
d - coe�cient of price reduction
m - coe�cient of price stagnation
pu- the probability of an increase in the stock

price
pd- the probability of a decrease in the stock

price
pm- the probability of a staying the same in the

stock price
We choose the parameters u, d,m to match the

volatility σ of the stock price. The step is of length
∆t. According to the assumption from [3]:

u = eσ
√
2∆t

m = 1

d = e−σ
√
2∆t.

(1)

Also one can match the �rst two moments of
our models distribution according to the no arbi-
trage condition. In a risk-neutral world, the ex-
pected return on all assets is equal to the risk-free
interest rate (this means that all expected gains
are discounted at the rate) and the variance can
be expressed as follow [3]:

E(St) = S0e
r∆t (2)

var(St) = S2
0e

2r∆t(eσ
2∆t − 1) (3)

We equate two values for mathematical expecta-
tion (2) and variation (3) to form two equations of
the system. Also, using the property that the sum
of the probabilities equal to unity, we write down
the third equation. So, we got a system of three
equations and three unknown variables:

pu + pm + pd = 1

upu +mpm + dpd = er∆t

u2pu +m2pm + d2pd − (er∆t)2 = e2r∆t(eσ
2∆t − 1)
(4)

From this system the probability values for the
trinomial model are:

pu =
e2r∆teσ

2∆t − e2r∆t(d+ 1) + d

(u− d)(u− 1)

pd =
e2r∆teσ

2∆t − e2r∆t(u+ 1) + u

(d− u)(d− 1)
pm = 1− pu − pd

(5)
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The above setting (1) for parameters and (5) for
probabilities we use in the next sections for option
pricing numerical result.

Option pricing for trinomial model . The
methodology when pricing options using a trino-
mial tree is exactly the same as when using a bino-
mial tree. To determine the option price f based
on the trinomial tree, the following algorithm is
used:

1. Declare and initialize S(0)
2. Calculate the jump sizes u, d,m
3. Calculate the transition probabilities

pu, pd, pm

4. Build the share price tree
5. Calculate the option payo�s at maturity

time T , i.e node N:
for the call option

|S −K|+ =

{
S −K, S > K

0, S ≤ K,
(6)

for the put option

|K − S|+ =

{
K − S, K > S

0, K ≤ S,
(7)

6. Apply the following backward induction algo-
rithm, where u represents the time position and j
the space position

fu,j = e−r∆t(pufu+1,j+1 + pmfu+1,j+1 + pdfu+1,j+1) (8)

7. The fair price f of the European call or put
option is

f = f0,0 (9)

We apply this algorithm for option pricing for get-
ting numerical results for real �nancial data with
stagnation's periods.

Numerical results for trinomial model.

We consider Airbnb company spot price S0 =
= 103.51 for June 24, 2022. The strike price is
K = 100 for call options with maturity T is given
for ten di�erent dates. The yearly volatility for
returns of the underlying asset is computed as σ =
= 0.5758, the yearly riskless interest rate is set as
r = 0.16.

For these input parameters we compute jump
sizes and the transition probabilities

u = 1.02,m = 1, d = 0.98, (10) pu = 0.4166
pd = 0.4169
pm = 0.1663

(11)

and build the share price trinomial tree. The �rst
5 steps of this tree is demonstrated in the Graph
below.

Figure 2. Trinomial tree for 5 steps

After that we apply the backward induction al-
gorithm and build call option price trinomial tree.
See Graph for T = 5.

Figure 3. Tree of pay-o� function for 5 steps

The fair price for this call option is C = 6.1957.

The results for di�erent times of maturity are
demonstrated in the �gure 4.

Figure 4. Simulated prices for the binomial and

trinomial option pricing models

Subdi�usion for modelling of illiquidity

Subdi�usion processes with IG subordi-

nator and its simulation. For modelling of
illiquidity in continuous case it is useful to apply
the subdi�usion process, which is used in statis-
tical physics for describing the trapping events of
the subdi�usive particle. In physics, this process
usually is described by Fokker-Planck fractal equa-
tions.

Equivalent description of subdi�usion there ex-
ists in terms of subordination, where the stan-
dard di�usion process is time-changed by the so-
called inverse subordinator. In this section we con-
sider B-S model and the standard di�usion process
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GBM for describing underlying risky asset in sub-
di�usive regime. For it we replace the calendar
time t in classical GBM [7]

dX(t) =

(
µ+

σ2

2

)
X(t)dt+ σX(t)dBt, t > 0.

(12)
with some stochastic process H(t) and obtain sub-
di�usive GBM

dXH(t) =

(
µ+

σ2

2

)
XH(t)dHt + σXH(t)dBH(t).

(13)
In formula (13) H(t) is called the inverse subordi-
nator and it de�nded as

H(t) = inf (τ > 0 : G(τ) > t)) .

The inverse subordinator H(t) is also called a "hit-
ting time" and is interpreted as the time of �rst
reaching a certain price, which may not change for
some time. By construction, the inverted process
may be constant. Therefore, any process subordi-
nated by H(t) exhibits motionless periods.

The di�nition (3.1) of the inverse subordinator
is based on the use of some other random process
called a subordinator G(t).

The subordinator G(t), in its turn, is generally
a non-decreasing stochastic process with station-
ary independent increments with right continuous
left limits sample paths.

Many types of subordinators such as α-stable,
tempered-stable, Gamma, Poisson and other have
been already applied for di�erent subdi�usive
models of illiquidity (see for example [6], [7], [8],
[14]).

In this paper we propose to take the Inverse
Gaussian process IG as a subordinator for the sub-
di�usive modelling. The G(t) process is a non-
decreasing Levy process (i.e., process with sta-
tionary independent increments), where the incre-
ments G(t + s) − G(s) follow the inverse Gaus-
sian G(δt, γ) distribution with probabilities den-
sity function (PDF) with parameters γ and δ (see
for example [9]):

g(x, t, γ, δ) =
δt√
2πx3

eδγt−(δ2t2/x+γ2x)/2, x > 0

For the standard IG distribution, where γ = δ = 1
the PDF will be

f(x, t) =
t√
2πx3

exp

(
− (x− t)2

2x

)
, x > 0,

Then for any moment t we have E(G(t)) = t,
var(G(t)) = t.

The tail probability for G(δt, γ) is studied in [9]
and equals

P (G(t) > x)∼
√

2

π

δt

γ2
eγδtx−3/2e−(γ2/2)x, x → ∞.

The q-th order moments of the G(δt, γ) are given
by

EGq(t) =

√
2

π
δ

(
δ

γ

)q−1/2

tq+1/2eδγtKq−1/2(δγt),

where Kq(ω) is the modi�ed Bessel function of
the third kind with index q, de�ned in [9].

The algorithm of the simulation of the IG pro-
cess G(t) for time points t1 = 1

n , t2 = 2
n , ..., tn = 1

can be presented into the following steps [9]:
1. For i = 1, 2, ..., n and dt = 1/n we generate n
independent identically distributed inverse Gaus-
sian variables Fi assuming γ = ∆ = 1
a) Generate a standard normal random variable
N .
b) Assign X = N2.
c) Assign Y = dt+ X

2 + 1
2 ∗

√
4dt.

d) Generate a uniform [0, 1] random variable U .

e) If U ≤ dt
dt+Y return Y ; otherwise return (dt)2

Y

2. Assign G(t0) = 0 and G(ti) =
∑i

j=1 Fj , i =
= 1, 2, ..., n
3. G(t1), G(t2), ..., G(tn) are n simulated values of
the IG process at times t1, t2, ..., tn respectively.

The simulation of the trajectory G(t) is demon-
strated below on Figure 6.

Figure 5. Simulation of the IG process trajectories

The inverse subordinator H(t) is also called a
hitting time or stochastic clock de�ned by (3.1) is
the inverse to the IG process. The IIG process
was studied in [9], where were found as q-th order
moments of the IIG(δt, γ)) as its tail behaviour.

In order to simulate the approximate trajectory
inverse subordinator H(t), we de�ne H(∆t) with
the step length ∆ as follows [9]:

H∆(t) = [min{n ∈ N : G(∆n) > t}−1]∆, n = 1, 2, . . .
(14)
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where ∆ is the step length and G(∆n) is the
value of the Inverse Gaussian process G(t) evalu-
ated at n.

The simulation of the trajectoryH(t) is demon-
strated on Figure 7.

For simulation of the trajectory subdi�usive
GBM X(t) we remind that the Ito equation al-
lows modeling the time dynamics of an arbi-
trary stochastic process by means of the iterative
scheme[15]:

xk+1 = xk +a (xk, tk)△ t+ b(xk, tk)
√
△tεk. (15)

In paper [16] were considered iterative schemes
for fractal activity time processes with inverted
gamma subordinator. For modeling stochastic
subdi�usive GBM we propose the next iterative
scheme

xk+1 = xk + µxk∆H(t) + σxk

√
∆H(t)εk, (16)

where ε is white noise with normal standard dis-
tribution, ∆H(t) have IIG distribution.

The simulation of the trajectoryX(t) according
(16) is demonstrated on the Figure 6.

Figure 6. Simulation of the inverse to the IG process

trajectories

Meanwhile, the trajectory for the subdi�usion
GBM with the inverse to the IG process is demon-
strated on the Figure 7.

Figure 7. Simulation of the subdi�used Geometric

Brownian motion with inversed IG subordinator

Monte Carlo method for option pricing

in subdi�usion Black - Scholes model. The

fair price of the European call option in the non
fractional B-S model (12) is given by:

C(S,K, T, r, σ) = N(d1)S −N(d2)Ke−rT (17)

with

d1 =
log S0

K + rT + 1
2σ

2T

σ
√
T

, (18)

d2 =
log S0

K + rT − 1
2σ

2T

σ
√
T

(19)

are both functions of �ve parameters:
T,K, S0, r, σ, and N(·) is a standard normal cumu-
lative distribution function, T is time to maturity
(in years), r is interest rate and σ is volatility.

Consider a time-changed version of the B-S
model, where the underlying risky assets follow
(13). Then, as were shown in [7] the market
model is arbitrage-free and incomplete and the cor-
responding fair price of the European call option
in subdi�usive regime [7] is

Csub (S,K, T, σ) = ⟨C (S,K,H(T ), σ)⟩

=

∫ ∞

0

C (S,K, x, σ) g(x, T )dx (20)

Here, g(x, T ) is the PDF of H(T ) and
C(S,K, T, σ) is given by (17).

It is worth to mention, that the proof of for-
mula (20) for fair price is based on the common
ideas for changed time models, see for examples
proof in [11] for Student model with FAT or for
Student-like FAT in [10] and their applications in
[13], [12].

There are two ways of �nding the values of the
price C(·). One is to calculate C(·) by approxi-
mating the integral in (20). However, this can be
performed in cases, where g(x, T ) is known exactly.

The other way is to �nd C(·) by using the
Monte-Carlo method. One simulates the trajec-
tories for the inverse subordinator on the interval
[0, T ] by the approximation scheme (14). Then,
one obtains the fair price as an estimation of the
expected value for simulated prices where the in-
verse subordinator stands for calendar time T in
(20)

Csub(S,K, T, r, σ) = ⟨C(S,K,H(T ), σ)⟩

=
1

n

n∑
i=1

C(S,K,Hi(T ), σ), (21)

where C(S,K, T, σ) is taken from Black-Scholes
option pricing formula (17).

One can see the applying of the Monte-Carlo
method for option pricing in subdi�usive models,
for example, in the papers [7], [8], [14].
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Numerical results for subdi�usive Black-

-Scholes model . For the company "Airbnb" the
input parameters are: S = 103.51, K = 100, r =
= 0.16, σdiff = 0.5758 for the di�usion model (see
section 2.3 above).

First we simulate N trajectories of subordina-
tor G(t), that is a process of independent station-
ary increments having IG distribution.

After that we simulate N values of the inverse
IG subordinator H(T ) for every given time to ma-
turity T and calculate N option price values, using
Black-Scholes option pricing formula (17).

Then �nd the fair price as a mean for N scenar-
ios, obtained in the previous step according (21).

The results are presented in the graphic shape
in Fig. 8.

Figure 8. Simulated prices for the di�usive and

subdi�usive B-S models

As we can see from graphics in Fig. 8., the
di�usive option pricing model shows better results
on the short-term period, while the subdi�usive
model is more e�ective on the long-term perspec-
tive.

For more detail we need to compute and com-
pare the estimation errors.

Comparison of the two models

In this section we compare numerical results for
AIRBNB company for two proposed models. It is
a trinomial tree model and subdi�usive B-S model
with IG subordinator.

Our aim is not only to compare these two mod-
els each with other, but also to show that both
models adequately describe the illiquid market.

In Fig. 9 we compare the subdi�usive B-S for-
mula for European call options with the classical
one and with option pricing using trinomial tree
model. We estimated the values of subdi�usive B-
S formula using Monte Carlo methods based on
the above described simulation procedure.

Figure 9. Comparison of the trinomial model and

the B-S subdi�usive approach for the call option

pricing

To compare numerical results we use abso-
lute relative percentage (ARPE) and root mean
squared error (RMSE):

ARPE =
|x(tk)− xexact(tk)|

xexact(tk)
(22)

RMSE =

√
1

n
Σn

i=1

(xi − xexacti

σi

)2

(23)

It is worth to mention, in econometrics, the root
mean squared error (RMSE) (22) is a key criterion
for model selection. The mean squared error in-
dicates the mean squared deviation between the
forecast and the outcome. It sums the squared
bias and the variance of the estimator.

The advantage of the ARPE (23) relatively to
the RMSE measure is that it gives a percentage
value of the pricing error.

Therefore, if we use both these errors it pro-
vides more insight into the economic signi�cance
of performance di�erences.

RMSE

B-S 1.82
B-S Subdi�usion 1.85
Trinomial model 1.54

Table 1. The RMS errors for di�usion, subdi�usion

and trinomial models regarding to the market price

Conclusion

In the paper two di�erent approaches for mod-
elling market with stagnation periods were consid-
ered. We apply well-known trinomial tree model in
discrete time case and propose subdi�usive model
with IG subordinator in continuous time case.

For the option pricing the backward induc-
tion algorithm trinomial tree model was used. In
the continuous time case Monte-Carlo method was
proposed.
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The programmed model can be used to valu-
ate option price by several di�erent methods and
it can help to make decision.

To compare numerical results we used abso-
lute relative percentage (ARPE) and root mean
squared errors (RMSE).

In the framework of the paper we compared op-
tion prising results in situation when strike priceK
was �xed (in the money), while time to maturity
T were changing.

If we compare classical B-S model with subdif-
fusive one, the results show that the di�usive op-
tion pricing B-S model shows better results on the
short-term period, while the subdi�usive model is
more e�ective on the long-term perspective. Mean-
wile RMSE is bigger for proposed subdi�usive

model then for classical B-S one. Comparing sub-
di�usive B-S model with trinomial one we assume
that trinomial model has the smallest RMS error.

In the future we are going to examine the ARP
pricing errors of the proposed option pricing mod-
els in more detail (see paper [17] ) and consider the
pricing errors as a regression on the time to matu-
rity T (in years), the moneyness of the option, and
a binary variable that is set to unity, if the option
is a call and to zero in the case of a put. This can
indicate a level of explanatory value of moneyness,
maturity and the put-call dummy in the model.

Our next step is to apply the procedure of cal-
culating value-at-risk in the proposed model (with
IG subordinator) and analyze it for di�erent types
of investor portfolios like in the papers [17], [18].
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ÄÂÀ ÏIÄÕÎÄÈ ÄÎ ÖIÍÎÓÒÂÎÐÅÍÍß ÎÏÖIÎÍIÂ Â

ÓÌÎÂÀÕ ÍÅËIÊÂIÄÍÎÑÒI

Ñòàòòþ ïðèñâÿ÷åíî öiíîóòâîðåííþ îïöiîíiâ â óìîâàõ íåëiêâiäíîñòi, êîëè öiíà íà ðèíêó ìî-
æå íå çìiíþâàòèñÿ ïðîòÿãîì äåÿêîãî ÷àñó, ùî ¹ äîñèòü ïîøèðåíîþ ñèòóàöi¹þ íà ñó÷àñíèõ ôi-
íàíñîâèõ ðèíêàõ (íàïðèêëàä, ãëîáàëüíi çìiíè, ÿêi íåãàòèâíî âïëèâàþòü íà ôiíàíñîâó äiÿëüíiñòü,
àáî íåâåëèêà êiëüêiñòü ó÷àñíèêiâ ðèíêó, àáî ðèíîê, ùî òiëüêè ðîçâèâà¹òüñÿ, òîùî).

Ó ñòàòòi ðîçãëÿíóòî äèñêðåòíèé i íåïåðåðâíèé ïiäõîäè äëÿ ìîäåëþâàííÿ òà öiíîóòâîðåííÿ
îïöiîíiâ â óìîâàõ ðèíêó ç íåëiêâiäíiñòþ.
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Äëÿ äèñêðåòíîãî ÷àñó áóëî îáðàíî òðèíîìiàëüíó ìîäåëü, ùî âäîñêîíàëþ¹ áiíîìiàëüíó, äî-
çâîëÿþ÷è öiíi àêöié íå òiëüêè ðóõàòèñÿ âãîðó, âíèç, àëå é çàëèøàòèñÿ íåçìiííîþ ç ïåâíîþ
éìîâiðíiñòþ, ùî ¹ áàæàíîþ âëàñòèâiñòþ ìîäåëþâàííÿ â óìîâàõ íåëiêâiäíîñòi. Ó ñòàòòi áóëè
âèçíà÷åíi ïàðàìåòðè òðèíîìiàëüíî¨ ìîäåëi äëÿ ðåàëüíèõ ôiíàíñîâèõ äàíèõ i çàñòîñîâàíî àëãî-
ðèòì çâîðîòíî¨ iíäóêöi¨ äëÿ îöiíêè öiíè êîë-îïöiîíó.

Äëÿ íåïåðåðâíîãî ÷àñó äëÿ ìîäåëþâàííÿ ïåðiîäiâ ñòàãíàöi¨ ôiíàíñîâèõ äàíèõ óñïiøíî çàñòîñî-
âó¹òüñÿ ñóáäèôóçiéíà ìîäåëü,ùî ç'ÿâèëàñÿ äëÿ îïèñó ïîäié çàõîïëåííÿ ôiçè÷íèõ ÷àñòèíîê. Ó öié
ñòàòòi áóâ çàïðîïîíîâàíèé îáåðíåíèé ãàóñiâñüêèé ïðîöåñ ÿê ñóáîðäèíàòîð äëÿ ñóáäèôóçiéíîãî
ìîäåëþâàííÿ íåëiêâiäíîñòi òà öiíè îïöiîíiâ. Âèêîíàíî ñèìóëÿöiþ òðà¹êòîðié äëÿ ñóáîðäèíàòî-
ðà, îáåðíåíîãî ñóáîðäèíàòîðà òà ñóáäèôóçiéíîãî ÃÁÌ. Äëÿ îöiíêè îïöiîíiâ çàñòîñîâàíî ìåòîä
Ìîíòå-Êàðëî.

Íàøîþ ìåòîþ áóëî íå òiëüêè ïîðiâíÿòè öi äâi ìîäåëi, à é ïîêàçàòè, ùî îáèäâi ìîäåëi àäå-
êâàòíî îïèñóþòü íåëiêâiäíèé ðèíîê i ìîæóòü áóòè âèêîðèñòàíi äëÿ öiíîóòâîðåííÿ îïöiîíiâ
íà öüîìó ðèíêó. Äëÿ öüîãî áóëî ðîçðàõîâàíî òà ïðîàíàëiçîâàíî àáñîëþòíi âiäíîñíi (ARPE) i
ñåðåäíüîêâàäðàòè÷íi ïîìèëêè (RMSE) äëÿ îáîõ ìîäåëåé.

Çàâäÿêè çàïðîïîíîâàíèì ïiäõîäàì iíâåñòîð îòðèìó¹ iíñòðóìåíòàðié, ÿêèé äà¹ çìîãó âðàõó-
âàòè íåëiêâiäíiñòü.

Êëþ÷îâi ñëîâà: ñóáäèôóçiéíà ìîäåëü, ñóáîðäèíàòîð, îáåðíåíèé ñóáîðäèíàòîð, ÷àñ ïîïàäàííÿ,
òðèíîìiàëüíà ìîäåëü.
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