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REGULARIZATION BY DENOISING FOR INVERSE
PROBLEMS IN IMAGING

In this work, a generalized scheme of regularization of inverse problems is considered, where a priori
knowledge about the smoothness of the solution is given by means of some self-adjoint operator in the
solution space. The formulation of the problem is considered, namely, in addition to the main inverse
problem, an additional problem is defined, in which the solution is the right-hand side of the equation.
Thus, for the regularization of the main inverse problem, an additional inverse problem is used, which
brings information about the smoothness of the solution to the initial problem. This formulation of the
problem makes it possible to use operators of high complexity for reqularization of inverse problems, which
1s an urgent need in modern machine learning problems, in particular, in image processing problems.
The paper examines the approzimation error of the solution of the initial problem using an additional

problem.
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Introduction

Solving modern machine learning tasks requires
development of new methods of solving corre-
sponding inverse problems. Majority of real-world
inverse problems are ill-posed and therefore require
regularization. For some digital signal processing
tasks, such as image de-noising, image restoration,
super-resolution, image improvement, the choice
of regularization technique is non-trivial, whereas
significantly influences the corresponding solution.

In our work we study generalized regularization
scheme for inversion of image transforms. For in-
verse problem

Arx =y

we consider Bayesian approach, or maximum a
posteriori probability (MAP) estimate, which finds
such an z, that maximises the conditional proba-
bility p(z|y). According to Bayes rule

plaly) = PEY) __ Pla)p(a)

py)  [pyle)p(z)de

therefore maximisation of p(z|y) corresponds to
the following problem:

o< p(y|z)p(x),

arg min(— log p(y|) — log p(x)).

Obviously, real probability distribution func-
tions are unknown. Therefore instead of it we solve
the following heuristics

= arg;nin{l(x,y) +ap(z)}, (1)

where I(z,y) is a loss function and p(z) is a regu-
larization term.
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Let’s slightly modify (1):

Z = argmin{l(z,y) + ap(v)},z = v.

It allows us to apply Alternating Direction Method
of Multipliers (ADMM) from the paper [2], using
Lagrangian:
A 2 Ay e
La(z,v,u) = Uz, y)+ap(v)+3 la—vtul"=F [l
It leads to iterative solving following minimiza-
tion tasks till convergence:
& +— argmin L(x, 0, u)

0 «— argmin L(Z, v, u)
x

u<«—u+ (T —0)

or after redefining variables in terms of (1)

1SN

=minl(z,y) + Bz — v||?,

x

>

=minap(v) + Bz —v|>.

In such a way, instead of one inverse problem
with regularization scheme we’ve got two intercon-
nected minimization problems, iterative solving of
which allows us to find solution for the initial prob-
lem. Having some initial zy and vy we iterate

Ti+1 :mzlnl(:r,y) =+ BHI - UiH27
vis1 =minap(v) + Bllz; —v|*.

Let’s consider some operator D : X — X, that
preserves x as a solution, i.e.

AD(z,0) =y,
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for example, for super-resolution task instead of D
a de-noising operator may be used.

This allows to see all the setting from another
perspective: we have inverse problem Ax = y and
its corresponding loss-function I(z,y), and some
other problem with loss-function p(z).

In such a way, instead of one inverse problem
we get two interconnected problems, where second
one brings prior information to the first one. As
an additional problem, any prior information may
be used. For example, some external classifier for
image generation improvement problem or denois-
ing problem as a regularization for super-resolution
problem, etc.

The idea to use image denoisers as a mecha-
nism behind the regularization term underlies the
Regularization by Denoising (RED) framework [5]
(2,2 — f(2)),
where f(-) is the denoiser of choice.

This idea has been broadened to the follow-
ing setting, called Regularization by Denoising via
Fixed-Point Projection (RED-PRO) [1].

prep(z) £

trEp-pro = argminl(z,y),
xT
st. |z — f(x)]* = 0.

It can be seen as a solving of inverse problem with
additional inverse problem = = f(x) as a regular-
ization.

The same framework may be seen as a regu-
larization by means of regularization term p(zx) is
ap(z) = ax®[x — D(z,0)]. Under mild conditions
(differentiability, local homogeneity, and symmet-
ric Jacobian for D) gradient descent may be ap-
plied to get the solution:

Tpi1 = v — p[AT (Azy — y) — afzy — D(wg, 0)]).

In [1] it has been shown, that Plug-and-Play
Prior (PnP) proximal gradient method considered
in [4] is a special case of Regularization by Denois-
ing via Fixed-Point Projection (RED-PRO), the
convergence of both frameworks to globally opti-
mal solutions has been proven as a result of the
convergence analysis and the study of the solutions
of both PnP and RED frameworks [1].

Another classical approach to solving inverse
problem Az = b is the method of Tikhonov-
Phillips regularization in Hilbert scales, where a
regularized approximation z? is defined as the so-
lution of the minimization problem

min Az — 3’| + af| Bz %,
z€D(BT)
where o > 0 is the regularization parameter,
B : D(B) C X — X is an unbounded densely

defined self-adjoint strictly positive definite opera-
tor and s is some non-negative real number to be
chosen properly to influence the properties of the
regularized approximation z? .

In [7] it was shown that under the assumptions
1BP2|| < E

and
m||B™z| < [[Az|| < M||B™ ||

with some constants E, m and M, the Tikhonov-
Phillips regularized approximation x° of problem
Az = y provides order optimal error bounds

I3, - & = O/ @)

for s > (p — a)/2, in the case that « is chosen a
priori by a = ¢62(@+9)/(a+P) with some constant
c>0.

In the paper we study the approach to solving
inverse problem with regularization by means of
additional inverse problem with fixed-point prob-
jection, that may be seen as a smoothing condi-
tion [6].

General Regularization Scheme

In this paper we consider ill-posed problem
Az =y, (2)

where A : X — Y is a bounded linear operator be-
tween real Hilbert spaces X and Y with non-closed
range R(A). Let’s denote the inner producy by
(-,+) and the corresponding norm on the Hilbert
spaces by || - ||

We assume, that the operator A is injective and
that y belongs to R(A). It implies that (2) has a
unique solution & € X. Suppose that instead of
exact data y we have an available data ¢y° € Y
such that

ly =y’ <96 (3)

for some known noise level §. Since R(A) is as-
sumed to be non-closed, the solution & does not
depend continuously on the exact y and available
data y°. Hence, the problem (2) is ill-posed and
therefore requires the regularization. Regulariza-
tion is reconstruction of the solution of problem
with inexact data using additional information, for
example, (A1) subjective information concerning
the smoothness of Z and (A2) objective informa-
tion concerning the smoothing property of the op-
erator A.

To formulate the smoothing properties we use
densely defined unbounded self-adjoint strictly
positive operator B : X — X and some index
function .
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Definition 1. Function ¢ : Rt — R7 is called
index function if it is continuous and strictly in-
creasing with ¢(04) = 0.
Assumption Al: For some p > 0 and F < oo,
the solution & of the problem (2) satisfies
1B @) < .
Assumption A2: There exists some index func-
tion ¢ with properties:
(i) there exists a constant m > 0 with
m|e(B~2)z| < ||Az| for all x € X
(ii) for p as in Assumption A1, the function
Ap(AY/P) 2 (0,]|B~?P] — RT is convex
Definition 2. General regularization scheme in
Hilbert space is defined as

To = B g, (T*T)T™y,
zh = B ga(T"T)T"y’

with T = AB~° for some s > 0 and piece-wise
continuous g, : (0, |T]|?] — R with the property

Jig 0o =12

For further analysis we make additional as-
sumption about the function g,,.
Assumption A3: There exist positive constants
~ and (3 such that

sup  VAlga (V)] < /e,
A>0

sup  Alga(N)] < 1,
A>0

sup VAL-Xga(N)] < BV,
A>0

sup Al = Aga (V)| < 1

A>0

Different regularization methods are character-
ized by corresponding functions g,,.

For example, ordinary Tikhonov-Phillips reg-
ularization in Hilbert space is defined by g, =
= 1/(A«). In this case Assumption A3 is satisfied
with v =1/2 and 8 = 1/2. For Tikhonov-Phillips
regularization of order m in Hilbert space the func-
tion g, is defined as following;:

ga—i(l (Aia>m>

with v = /m and 8 = 1.

Spectral method of regularization in Hilbert
space is defined by g.(\) = m with v = 1
and B = 2/4/27. Asymptotical regularization in
Hilbert space is defined by go(A) = +(1 — ™M),
v =1, B = 1/v/2e. Finally, iterative regulariza-
tion in Hilbert space, also known as Landweber
iteration, are defined by

=1 (1= -0,

fory=1and 8 = 1/\/%.

In [6] it was shown that under Assumption A2
the regularized approximation x% with s = p is
order optimal if « is chosen a priori.

Theorem 1 ([6]). Let x5 be regularized appro-
imation defined by general regularization scheme
(see Definition 2) with s chosen by s = p and let
assumptions Al and A8 be satisfied. Then, for

2
o= 2,
5 .
e, — 2| <
(v+ 1) sup{|lz| : |B"z| < E, [[Az| < c}
zeX
with ¢ = B—ﬁ If, in addition, assumption A2 is

satisfied, then

ot - ol < O+ DB s (s
[e% — p m2E2 ’
where ¥, (-) is defined as 1, (\) = A\p(A\1/P).

It implies Mair’s convergence rate result for
the method of Tikhonov-Phillips regularization. In
fact, the second error bound of Theorem 1 shows
the order optimality of the regularized approxima-
tion 2 (see [6]).

Another inverse problem as a
regularisation

Let’s come back to the initial inverse problem
Ax =y.
And let’s consider another inverse problem
Dq = x.

Then general regularization scheme defines the fol-
lowing solution:

qi = go(D*D)D*x.

In [3] within the proof of Proposition 2.8 it was
shown that for the whole class of regularization
families the estimate of regularization error has the
form

16— a2l < RAp(a) +7o1/0—=

all = -1/2 \/a
The first term here depends on the smoothness of
the solution, and in the statistical spirit we agreed
to call it the bias. Then the second term is the
variance, and its order d/+/c is the same for all

regularization families under consideration.
Then we have

Dq¢® = Dgo(D*D)D*z ~ x,
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thus let’s denote the following operator:
B =Dg,(D*D)D*z: X — X.

Easy to see, that B is self-adjoint strictly pos-
itive definite operator. Then all the theoretical
results from the previous section are applicable to
this problem setting.

Conclusions

Regularization of ill-posed operator equations
in Hilbert scales is usually studied under the as-
sumption that the operator A involved in the equa-
tion and the operator B generating the Hilbert
scale are related by some operator-valued index
function ¢. In the classical paper [7] of Natterer,
such a relation that characterizes the smooth-

ing properties of A relative to the operator B~1
has been expressed in terms of power functions
(see [6]). Extensions to general index functions
have been considered in Mair’s paper [8] for the
case of high-order regularization in Tikhonov-
Phillips regularization method. In our paper we
compare classical results for a general regulariza-
tion scheme to the case of regularization by means
of denoiser operator. Another accomplishment of
this paper is the justification of error bounds in the
light of general index functions ¢. It is important
to note that the general regularization scheme re-
quires neither any knowledge of the index function
¢ nor any knowledge of the solution smoothness
measured against the Hilbert scale. Nevertheless,
it automatically provides an order optimal solution
for the considered ill-posed problem.
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PEI'VJIAPU3AIIA 3A JOIIOMOI'OIO BUJAJIEHHA
orymMy B OBEPHEHUX 3AJTAYAX OBPOBKU
S3O0BPAZKEHD

Y uit pobomi po3eaanymo y3azasvHeny cremy pezyaspudayii obepnenux 3adau, de anpiopne 3na-
HHA NPO 2400KICMb PO36°A3KY 0aHO 36 JONOMO2010 0€AK020 CAMOCIPANCEHO20 ONEPATNOPA 6 NPOCMOPI
Pp036°A3KI6. Po32aanymo nocmarosky 3a0a4i, KOAU 0KPIM OCHOBHOT 0beprenoi 3adaui eusnaveno doda-
mKoey 3a0avy, 8 AKII ULYKAHUT P03 A30K € NPAGOI YACTNUHOW PIBHANHA. TaKUM YUHOM, ONA PELYAAPU-
3031 0cHOBHOT 0bepHenot 3adani 6UKOPUCTNOBYEMDBCA d0damKoea obeprera 3adaua, AKaG NPUSHOCUMb 00
nowamx060i 3adaui ingopmayiro npo aradkicmsd po3s’s3ky. Tarxa nocmanoska 3a0a4i 0GE MOHCAUBICML
BUKOPUCTMOBYBAMU ONEPAMOPYU BUCOKOT CKAGOHOCTIE OASL PERYAAPU3AUTE 00EPHEHUT 36004, WO € HAZAND-
HOMW NOMPEDO0 8 CYHWACHUT 360a%AT MAWUHHOZ0 HABYAHHA, 30KPEMG, 6 3a0a4axr 00PobKU 300PaHCEHD.
B pobomi docaidocerno noxubky anpokcumauii po3s’asky nowamxosoi 3adayi 3a donomozor 000amKroeot
3adami.

KurtouoBi cioBa: obepHeHi 331adi.

Mamepianr naditiwos 27.10.2022
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