
УДК 519.2

S. Drin, A. Kriuchkova, V. Toloknova

https://doi.org/10.18523/2617-7080620236-13

PREDICTIVE MODEL FOR A PRODUCT WITHOUT
HISTORY USING LIGHTGBM. PRICING MODEL FOR A

NEW PRODUCT

The article focuses on developing a predictive product pricing model using LightGBM. Also, the goal
was to adapt the LightGBM method for regression problems and, especially, in the problems of forecasting
the price of a product without history, that is, with a cold start.

The article contains the necessary concepts to understand the working principles of the light gradient
boosting machine, such as decision trees, boosting, random forests, gradient descent, GBM (Gradient
Boosting Machine), GBDT (Gradient Boosting Decision Trees). The article provides detailed insights
into the algorithms used for identifying split points, with a focus on the histogram-based approach.

LightGBM enhances the gradient boosting algorithm by introducing an automated feature selection
mechanism and giving special attention to boosting instances characterized by more substantial gradients.
This can lead to significantly faster training and improved prediction performance. The Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) techniques used as enhancements to
LightGBM are vividly described. The article presents the algorithms for both techniques and the complete
LightGBM algorithm.

This work contains an experimental result. To test the lightGBM, a real dataset of one Japanese C2C
marketplace from the Kaggle site was taken. In the practical part, a performance comparison between
LightGBM and XGBoost (Extreme Gradient Boosting Machine) was performed. As a result, only a slight
increase in estimation performance (RMSE, MAE, R-squard) was found by applying LightGBM over
XGBoost, however, there exists a notable contrast in the training procedure’s time efficiency. LightGBM
exhibits an almost threefold increase in speed compared to XGBoost, making it a superior choice for
handling extensive datasets.

This article is dedicated to the development and implementation of machine learning models for
product pricing using LightGBM. The incorporation of automatic feature selection, a focus on high-
gradient examples, and techniques like GOSS and EFB demonstrate the model’s versatility and efficiency.
Such predictive models will help companies improve their pricing models for a new product. The speed
of obtaining a forecast for each element of the database is extremely relevant at a time of rapid data
accumulation.

Keywords: GBM, GBDT, LightGBM, GOSS, EFB, predictive model.

Intoduction

In today’s rapidly evolving business landscape,
companies are confronted with formidable chal-
lenges in effectively managing sales strategies and
determining optimal pricing strategies for their
products. A particularly intricate aspect of this
endeavor is establishing the price for a new prod-
uct lacking historical sales data.

The necessity to devise accurate and reliable
pricing strategies for novel products has led to
the emergence of sophisticated predictive models.
These models serve as invaluable tools for com-
panies aiming to ascertain optimal prices without
sufficient past experience. Among these models,
the LightGBM (Light Gradient Boosting Machine)
algorithm stands out as a powerful tool for quickly
finding the optimal forecast. The article uses the

LightGBM method for a predictive pricing model
for a new product, which is focused on the complex
challenges of modern markets.

The relevance of this research is underscored
by the critical role of pricing and decision-making,
especially during periods of economic instability
and the challenges associated with dynamic mar-
kets and the lack of historical sales data for new
products.

The main goal of this study is to implement
the LightGBM algorithm into the predictive pric-
ing model for setting optimal prices for new prod-
ucts.

The paper is organized as follows. The second
section delves into the theoretical underpinnings
that underlie the chosen machine learning model
for price forecasting. This section is based on the
papers [?], [?], [1], [2], where essential concepts

© S. Drin, A. Kriuchkova, V. Toloknova, 2023

S. Drin, A. Kriuchkova, V. Toloknova. Predictive model for a product without history using LightGBM 7

are explained. Friedman’s article [?] describes in
great detail a general gradient-descent "boosting"
paradigm. Specific algorithms are presented for
least-squares, least-absolute-deviation, and Huber-
M loss functions for regression, and multi-class
logistic likelihood for classification. Many use-
ful concepts and techniques can be found in El-
ements of Statistical Learning [?] by Hastie, Tib-
shirani, and Friedman. The authors introduce us
to decision trees, bagging, boosting, random for-
est, gradient descent and much more. In [1] we
can get acquainted with algorithms for identifying
split points.

The third section is devoted to the basic model,
namely to its distinguishing features and efficiency.
The main concept of LightGBM can be found in
source [2] as it is the original developer documen-
tation. Using the original source a comprehensive
explanation of the newly introduced algorithms,
GOSS and EFB, is provided, accompanied by in-
sights into their motivations and unique character-
istics.

Forth section contains some numerical results
for data, root mean squared errors (RMSE), mean
absolute error (MAE) and R-squared, the benefits
of which are clearly explained in [4]. The eval-
uation of the model is carried out using training
data, and a comparative assessment is performed,
juxtaposing the model’s performance against that
of the XGBoost model.

Preliminary theoretical base

Decision Trees. Decision Trees, a basic ma-
chine learning model, offer a structured approach
to decision-making through a tree-like framework.
One of the notable strengths of Decision Trees lies
in their interpretability, enabling the identifica-
tion of influential features that influence decision-
making processes. The hierarchical structure of
Decision Trees encompasses a root node, branches,
internal nodes, and leaf nodes.

A crucial concept of comprehending Decision
Tree algorithms is the notion of "impurity." There
are different measures of impurity such as entropy
and the Gini index. Impurity measures the im-
purity of a decision node in the tree. It aids in
determining which attributes are best suited for di-
viding into two ranges for regression. The concept
of information entropy was introduced by Claude
Shannon in 1948 [5].

Entropy is computed using the formula:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = −
∑︁
𝑐∈𝐶

𝑝(𝑐) log2(𝑝(𝑐))

where 𝑆 represents the dataset under considera-
tion, 𝑐 denotes classes within dataset 𝑆, 𝑝(𝑐) signi-

fies the fraction of data points belonging to class 𝐶
relative to the total data points in dataset 𝑆. The
entropy values range from 0 to 1. An entropy of
0 indicates that all instances in the dataset belong
to a single class, while an entropy of 1 indicates
maximum diversity.

Boosting. Boosting is a technique involving
the sequential training of classifiers in an ensemble.
Unlike Bagging, Boosting assigns greater attention
to the mistakes of previous models.

While Bagging trains base learners on inde-
pendently bootstrapped data subsets, allowing
us to simultaneously train all base learners in a
parallel environment, Boosting sequentially trains
base learners-models are trained one after another.
Therefore, training base learners in parallel is not
possible in Boosting.

How Boosting Works:

1. Assign weights to each training example so
that the sum of weights equals 1. Initially,
all example weights are equal.

2. Train the first classifier and identify the ex-
amples on which it made mistakes.

3. Reallocate weights so that "error examples"
from the previous step have greater weight
(while the sum of weights remains 1).

4. Train the next classifier. Since classifica-
tion quality is evaluated as a weighted sum
of errors, the second classifier focuses on
"smoothing out" the mistakes of the first
classifier.

5. Repeat the process until all classifiers are
trained.

Mathematically [?], [6], we have:

ℎ(𝑥) =

𝑚∑︁
𝑗=1

𝜌𝑗ℎ𝑗(𝑥)

where 𝜌 represents the weights of the 𝑗-th classifier.

By iteratively adjusting the weights of train-
ing examples and training weak models to correct
the errors of the previous ones, Boosting creates
a strong model capable of accurate data classifica-
tion.

Gradient Descent. The gradient descent
method is based on the idea that if the function
of multiple variables 𝐹 (𝑥) is defined and differ-
entiable in the vicinity of point 𝑎, then 𝐹 (𝑥) de-
creases fastest by moving from 𝑎 in the direction
of the negative gradient of 𝐹 at 𝑎, denoted as
−∇𝐹 (𝑎) (where ∇ represents the gradient, a vec-
tor of partial derivatives of the function). This
implies that if 𝑎𝑛+1 = 𝑎𝑛 − 𝛾∇𝐹 (𝑎𝑛) for a suffi-
ciently small step size (or learning rate) 𝛾 ∈ 𝑅+,
then 𝐹 (𝑎𝑛) ≥ 𝐹 (𝑎𝑛+1).

8 ISSN 2617-7080. Могилянський математичний журнал. 2023. Том 6

In other words, 𝛾∇𝐹 (𝑎) is subtracted from 𝑎
because we aim to move against the gradient to-
wards a local minimum. With this understand-
ing, we initiate with 𝑥0 as an assumption for
a local minimum of 𝐹 , considering the sequence
𝑥0, 𝑥1, 𝑥2, . . . such that 𝑥𝑛+1 = 𝑥𝑛 − 𝛾𝑛∇𝐹 (𝑥𝑛),
for 𝑛 ≥ 0.

As a result, we obtain 𝐹 (𝑥0) ≥ 𝐹 (𝑥1) ≥
≥ 𝐹 (𝑥2) ≥ . . ., and we expect the sequence 𝑥𝑛

to converge towards a local minimum. It’s worth
noting that the step size 𝛾 can be adjusted at each
iteration.

Gradient Boosting Machine. Gradient
Boosting Machine, commonly referred to as GBM,
is a machine learning method utilized for solving
classification and regression tasks. It constructs a
predictive model by combining multiple weak pre-
dictive models. GBM builds the model iteratively,
similar to other boosting methods, but it is more
versatile as it enables the optimization of any dif-
ferentiable loss function.

GBM is typically used in conjunction with de-
cision trees as base models, hence this combination
is often referred to as Gradient Boosting Decision
Trees (GBDT). Thus, we can assert that GBM is
a variant of an ensemble method, while GBDT is a
specific case where a tree is used as the estimator.
[?]

The generic gradient tree-boosting algorithm
for regression [?].

1. Initialize 𝑓0(𝑥) = arg min𝛾

∑︀𝑁
𝑖=1 𝐿 (𝑦𝑖, 𝛾)

2. For 𝑚 = 1 to 𝑀 :
a For 𝑖 = 1, 2, . . . , 𝑁 compute

𝑟𝑖𝑚 = −
[︂
𝜕𝐿 (𝑦𝑖, 𝑓 (𝑥𝑖))

𝜕𝑓 (𝑥𝑖)

]︂
𝑓=𝑓𝑚−1

b Fit a regression tree to the targets 𝑟𝑖𝑚 giving
terminal regions 𝑅𝑗𝑚, 𝑗 = 1, 2, . . . , 𝐽𝑚

c For 𝑗 = 1, 2, . . . , 𝐽𝑚 compute

𝛾𝑗𝑚 = arg min
𝛾

∑︁
𝑥𝑖∈𝑅𝑗𝑚

𝐿 (𝑦𝑖, 𝑓𝑚−1 (𝑥𝑖) + 𝛾)

d Update

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) +

𝐽𝑚∑︁
𝑗=1

𝛾𝑗𝑚𝐼 (𝑥 ∈ 𝑅𝑗𝑚)

3. Output 𝑓(𝑥) = 𝑓𝑀 (𝑥).
At each iteration, GBDT learns a decision tree

by fitting residual errors (errors up to the cur-
rent iteration). This means that each subsequent
learner aims to learn the difference between the ac-
tual outcome and the weighted sum of predictions
from the previous iteration. Errors are minimized

using the gradient method. The gradient indicates
the steepest descent direction of the loss function,
which GBDT employs to search for optimal split-
ting points to construct the tree.

Another popular algorithm is the Histogram-
based algorithm. Instead of searching for split
points among sorted feature values, the Histogram-
based algorithm divides continuous feature values
into discrete bins and utilizes these bins to con-
struct feature histograms during training.[2]

Histogram based algorithm. The funda-
mental idea of the Histogram-based algorithm is
to discretize the sequential feature values into 𝑘
integers and construct a histogram with a width of
𝑘. While traversing the data, the discretized value
acts as an index for accumulating statistics in the
histogram. After a single pass through the data,
the histogram accumulates the necessary statistics
and is subsequently traversed again to find the op-
timal split point. Since the histogram-based algo-
rithm stores discrete bins rather than continuous
feature values, a feature bundle can be built by
allowing mutually exclusive features to occupy a
specific range of bins. This can be achieved by
increasing the shift of the initial feature value.

The histogram-based algorithm from Guolin
et al. (2017) presented in [2] as Algorithm 1:
Histogram-based Algorithm.

As shown the histogram-based algorithm finds
the best split points based on feature histograms.
It costs 𝑂(#𝑑𝑎𝑡𝑎× #𝑓𝑒𝑎𝑡𝑢𝑟𝑒) for histogram con-
struction and 𝑂(#𝑏𝑖𝑛 × #𝑓𝑒𝑎𝑡𝑢𝑟𝑒) for finding
split points. Since #𝑏𝑖𝑛 is typically much smaller
than #𝑑𝑎𝑡𝑎, histogram construction will dominate
the computational complexity. If we can reduce
#𝑑𝑎𝑡𝑎 or #𝑓𝑒𝑎𝑡𝑢𝑟𝑒, we can significantly acceler-
ate GBDT training.

LightGBM

LightGBM is one of the most recent types of
Gradient Boosting Decision Trees (GBDT). This
model was developed by a team of researchers at
Microsoft in 2016. It was created as an improve-
ment over one of the most popular models- XG-
Boost, which is known for its speed and reliability
in multi-class classification projects.

The need to enhance XGBoost arose for a very
obvious reason – to achieve even greater efficiency
and faster implementation. As mentioned, the
most computationally intensive task in GBDT is
the search for optimal split points. This complex-
ity is directly proportional to both the number
of features and the number of instances. Con-
sequently, when dealing with large datasets, we
encounter speed-related issues. It was proposed
to reduce the number of data instances and the

S. Drin, A. Kriuchkova, V. Toloknova. Predictive model for a product without history using LightGBM 9

number of functions. This led to the introduction
of two new techniques: Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling
(EFB). These innovations were aimed at mitigat-
ing the computational challenges associated with
GBDT training on large datasets.

Gradient-based One-Side Sampling
(GOSS). In GBDT, there is no individual weight
for each data instance, but LightGBM that in-
stances with different gradients have varying im-
pacts on information gain calculations. Specifi-
cally, instances with higher gradients (less trained
samples) exert a greater influence on calculating
information gain.

To balance the effect of data distribution,
GOSS introduces a constant multiplier for exam-
ples with smaller gradients, as presented in Algo-
rithm 2: Gradient-based One-Side Sampling [2],
compensating for their contribution to the distri-
bution. Initially, the algorithm sorts data by the
absolute values of their gradients and selects the
top 𝑎 × 100% of them. Then, a random selection
of 𝑏 × 100% instances is made from the remain-
ing data. During information gain computation,
GOSS amplifies the selected data with lower gra-
dients by a constant factor of 1−𝑎

𝑏 , paying more
attention to less trained instances, without alter-
ing the original data distribution.

More theoretically, GBDT utilizes decision
trees to learn functions from the input space 𝜒𝑠 to
the gradient space 𝐺. Assuming a training dataset
of 𝑛 instances {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where each 𝑥𝑖 is a
vector of dimension 𝑠 in 𝜒𝑠. During each gradient
boosting iteration, we compute negative gradients
of the loss function with respect to the model’s
predictions, denoted as {𝑔1, 𝑔2, . . . , 𝑔𝑛}.

For constructing decision tree models, each
node is split based on the most informative fea-
ture. In the context of GBDT, information gain
is typically quantified through post-split variance
reduction, defined as follows.

Definition Let O be the training dataset on a
fixed node of the decision tree. The variance gain
of splitting feature j at point d for this node is
defined as

𝑉𝑗|𝑂(𝑑) =
1

𝑛𝑂

⎛⎜⎝
(︁∑︀

{𝑥𝑖∈𝑂:𝑥𝑖𝑗≤𝑑} 𝑔𝑖

)︁2
𝑛𝑗
𝑙|𝑂(𝑑)

+

(︁∑︀
{𝑥𝑖∈𝑂:𝑥𝑖𝑗>𝑑} 𝑔𝑖

)︁2
𝑛𝑗
𝑟|𝑂(𝑑)

⎞⎟⎠ ,

where 𝑛𝑂 =
∑︀

𝐼[𝑥𝑖 ∈ 𝑂], 𝑛𝑗
𝑙|𝑂 =

∑︀
𝐼[𝑥𝑖 ∈

∈ 𝑂 : 𝑥𝑖𝑗 ≤ 𝑑], and 𝑛𝑗
𝑟|𝑂 =

∑︀
𝐼[𝑥𝑖 ∈ 𝑂 : 𝑥𝑖𝑗 > 𝑑].

In GBDT, the decision tree algorithm chooses
𝑑*𝑗 = argmax𝑑𝑉𝑗(𝑑) for feature 𝑗 and computes the
maximum gain 𝑉𝑗(𝑑

*
𝑗). The data is then split based

on feature 𝑗* at point 𝑑*𝑗 into left and right child
nodes.

In the novel GOSS algorithm a subset 𝐴 is first
formed by selecting the top 𝑎× 100% of instances
with higher gradients. A random subset 𝐵 is then
sampled from the remaining instances with lower
gradients. The instances from subsets 𝐴 ∪ 𝐵 are
split based on the estimated variance reductioñ︀𝑉𝑗(𝑑).

For a subset 𝐴𝑙, 𝐴𝑟, 𝐵𝑙, and 𝐵𝑟 defined as de-
scribed, the estimated variance reduction is given
by:

̃︀𝑉𝑗(𝑑) =
1

𝑛

(︃(︀∑︀
𝑥𝑖∈𝐴𝑙

𝑔𝑖 + 1−𝑎
𝑏

∑︀
𝑥𝑖∈𝐵𝑙

𝑔𝑖
)︀2

𝑛𝑗
𝑙 (𝑑)

+

(︀∑︀
𝑥𝑖∈𝐴𝑟

𝑔𝑖 + 1−𝑎
𝑏

∑︀
𝑥𝑖∈𝐵𝑟

𝑔𝑖
)︀2

𝑛𝑗
𝑟(𝑑)

)︃
,

where 𝑎 and 𝑏 are constants, and the coefficient
1−𝑎
𝑏 is used for normalization.
Additionally, the GOSS method is supported

by the following theorem:

Theorem Let ℰ(𝑑) =
⃒⃒⃒ ̃︀𝑉𝑗(𝑑) − 𝑉𝑗(𝑑)

⃒⃒⃒
repre-

sent the approximation error in GOSS. With prob-
ability at least 1 − 𝛿, we have:

ℰ(𝑑) ≤ 𝐶2
𝑎,𝑏 ln

(︂
1

𝛿

)︂
· max

{︃
1

𝑛𝑗
𝑙 (𝑑)

,
1

𝑛𝑗
𝑟(𝑑)

}︃

+ 2𝐷𝐶𝑎,𝑏

√︃
ln
(︀
1
𝛿

)︀
𝑛

,

where 𝐶𝑎,𝑏 = 1−𝑎√
𝑏

· max𝑥𝑖∈𝐴𝑐 |𝑔𝑖| and 𝐷 =

= max{𝑔𝑗𝑙 (𝑑), 𝑔𝑗𝑟(𝑑)}.
The theorem provides an upper bound on the

approximation error ℰ(𝑑), which can be controlled.
With a probability of at least 1 − 𝛿, this error can
be bounded by a value that depends on the size of
the data subset and the maximum gradient value.

Exclusive Feature Bundling (EFB). High-
dimensional data often contain numerous features,
which can lead to model overfitting. Sparsity in
feature space is a common phenomenon.

Sparsity implies that many features are mutu-
ally exclusive, meaning they do not have non-zero
values simultaneously. This allows us to group
them into "exclusive feature bundles". A scan-
ning algorithm enables the construction of his-
tograms for these bundles, instead of individual
features, reducing the histogram construction com-
plexity from 𝑂(#𝑑𝑎𝑡𝑎×#𝑓𝑒𝑎𝑡𝑢𝑟𝑒) to 𝑂(#𝑑𝑎𝑡𝑎×
×#𝑏𝑢𝑛𝑑𝑙𝑒), where #𝑏𝑢𝑛𝑑𝑙𝑒 is significantly smaller
than #𝑓𝑒𝑎𝑡𝑢𝑟𝑒.

10 ISSN 2617-7080. Могилянський математичний журнал. 2023. Том 6

This facilitates accelerating GBDT training
while preserving model accuracy. However, two
issues arise: the first involves selecting features to
be grouped into a bundle, and the second pertains
to creating the bundle itself.

Since finding the optimal grouping strategy is
an NP-hard problem, we can approximate it by
reducing it to graph coloring, where nodes repre-
sent objects and edges indicate which objects can
be grouped. A greedy algorithm can provide fairly
accurate results for graph coloring with a constant
approximation factor.

Algorithm 3: Greedy Bundling from Guolin et
al. (2017) presented in [2]

Randomly introducing noise to a fraction of
feature values has a limited impact on training,
as long as the maximum conflict frequency within
each bundle is 𝛾. The training accuracy will not

decrease more than 𝑂([(1−𝛾)𝑛]
−2
3), where 𝛾 is the

total number of features.
Thus, opting for a small 𝛾 value maintains a

balance between accuracy and efficiency. Based
on this, we have an algorithm for exclusive feature
bundling.

The EFB algorithm, which is introduced by
Algorithm 4: Merge Exclusive Features in [2], can
consolidate numerous exclusive features into a sig-
nificantly smaller set of dense features, enabling
efficient avoidance of unnecessary computations
for zero feature values.

The LightGBM algorithm

Input:
Training data:
D = {(𝜒1, 𝑦1), (𝜒2, 𝑦2), . . . , (𝜒N, 𝑦N)}, 𝜒i ∈ 𝜒,
𝜒 ⊆ R, 𝑦i ∈ {−1,+1};
loss function: 𝐿(𝑦, 𝜃(𝜒));

Iterations: M;
Big gradient data sampling ratio: a;
slight gradient data sampling ratio: b;

1. Combine features that are mutually exclu-
sive (i.e., features never simultaneously ac-
cept nonzero values) of 𝜒i, i = {1, . . . ,N} by
the exclusive feature bundling (EFB) tech-
nique;

2. Set 𝜃0(𝜒) = arg min𝑐

∑︀𝑁
𝑖 𝐿 (𝑦𝑖, 𝑐);

3. For m = 1 to M do
4. Calculate gradient absolute values:

𝑟𝑖 =

⃒⃒⃒⃒
𝜕𝐿 (𝑦𝑖, 𝜃 (𝑥𝑖))

𝜕𝜃 (𝑥𝑖)

⃒⃒⃒⃒
𝜃(𝑥)=𝜃𝑚−1(𝑥)

,

5. Resample data set using gradient-based one-
side sampling (GOSS) process:
𝑡𝑜𝑝𝑁 = 𝑎× 𝑙𝑒𝑛(𝐷); 𝑟𝑎𝑛𝑑𝑁 = 𝑏× 𝑙𝑒𝑛(𝐷);
𝑠𝑜𝑟𝑡𝑒𝑑 = 𝐺𝑒𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠(𝑎𝑏𝑠(𝑟));
𝐴 = 𝑠𝑜𝑟𝑡𝑒𝑑[1 : 𝑡𝑜𝑝𝑁];

𝐵 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑖𝑐𝑘(𝑠𝑜𝑟𝑡𝑒𝑑[𝑡𝑜𝑝𝑁 :
𝑙𝑒𝑛(𝐷)], 𝑟𝑎𝑛𝑑𝑁); 𝐷′ = 𝐴 + 𝐵;

6. Calculate information gains:

𝑉𝑗(𝑑) =
1

𝑛

(︃(︀∑︀
𝑥𝑖∈𝐴𝑙

𝑟𝑖 + 1−𝑎
𝑏

∑︀
𝑥𝑖∈𝐵𝑙

𝑟𝑖
)︀2

𝑛𝑗
𝑙 (𝑑)

+

+

(︀∑︀
𝑥𝑖∈𝐴𝑟

𝑟𝑖 + 1−𝑎
𝑏

∑︀
𝑥𝑖∈𝐵𝑟

𝑟𝑖
)︀2

𝑛𝑗
𝑟(𝑑)

)︃
;

7. Develop a new decision tree 𝜃𝑚(𝑥)′ on set𝐷′;
8. Update 𝜃𝑚(𝜒) = 𝜃𝑚−1(𝜒) + 𝜃𝑚(𝜒);
9. End for;
10. Return 𝜃(𝑥) = 𝜃𝑀 (𝑥).

Practical implementation

EDA & Pre-Processing. The model was
created as a way to solve classification problems.
In this article, we will examine how the model
works with the problem of forecasting commod-
ity prices without history and for a dataset with
non-numerical data.

The dataset is available on the Kaggle website
under the name "Mercari Price Suggestion Chal-
lenge." Established in 2013, Mercari Inc. is a
Japanese company that operates one of the most
popular C2C marketplaces in the Japanese market.

The data is already divided into train-
ing and testing sets. The dataset comprises
the following seven characteristics: "name",
"item_condition_id", "brand_name", "cate-
gory_name", "shipping", "item_description" and
"price."

Our initial model looks like this:

𝑦 =𝑎0 + 𝑎1𝑋1 + · · · + 𝑎𝑛𝑋𝑛 + 𝜀

where:
� 𝑦 is the dependent variable (price),

� 𝑋1, . . . , 𝑋𝑛 are the independent variables
(features),

� 𝑎0, 𝑎1, . . . , 𝑎𝑛 are the coefficients associated
with each independent variable,

� 𝜀 represents the error term, which accounts
for the variability in 𝑦 that is not explained
by the model.

During the exploratory analysis and prepara-
tion of the data for work, it was chosen log(y) as
the dependent variable, because after constructing
the histograms of the distribution, it was found
that the logarithmic distribution is the closest to
the normal one. This is illustrated in the following
figure.

S. Drin, A. Kriuchkova, V. Toloknova. Predictive model for a product without history using LightGBM 11

Figure 1. Distributions of prices

Also, the general category was divided into
three separate subcategories, missing values were
processed. It’s worth noting that since most of
our characteristics are text, CountVectorizer, Tfid-
fVectorizer were used to convert them to numeric
values.

So, now we get a semi-logarithmic eight-factor
model

𝑙𝑜𝑔(𝑦) =𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4+

+ 𝑎5𝑋5 + 𝑎6𝑋6 + 𝑎7𝑋7 + 𝑎8𝑋8 + 𝜀

Model training. In this section, we delve
into the practical implementation of the Light-
GBM framework for price prediction.

The study was conducted in the Python envi-
ronment using the Params function. For the ’objec-
tive’ parameter, we designate ’regression’ to align
with our regression task. Additionally, we specify
the boosting type as ’gbdt’, which is the default
setting. We include the ’data_sample_strategy’
as our GOSS method, which is known for its effec-
tiveness in dealing with large datasets. Further-
more, we activate the ’enable_bundle’ option to
indicate our utilization of the Exclusive Feature
Bundling (EFB) technique. The chosen evalua-
tion metric is ’RMSE’, reflecting the Root Mean
Squared Error.

This configuration enables us to leverage the
strengths of LightGBM for accurate and efficient
price prediction.

Evaluation. To evaluate the performance
of the developed model, we will use the metrics
𝑅2, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) [4], where the Mean Abso-
lute Error (MAE) is calculated using the formula:

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦|,

the Coefficient of Determination (𝑅2) is computed
using the following formula:

𝑅2 = 1 − 𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

∑︀
(𝑦𝑖 − 𝑦)2∑︀
(𝑦𝑖 − 𝑦)2

and the Root Mean Squared Error (RMSE) is cal-
culated using the formula:

RMSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

where:

� 𝑛 is the total number of observations in the
dataset,

� 𝑦𝑖 is the predicted price,

� 𝑦𝑖 is the actual price.

For comparison, we also implemented the XG-
Boost model, which was mentioned in previous sec-
tions and has been further refined into the Light-
GBM framework.

It is important to note that in our experiment,
we employed the classical implementations of both
methods with identical parameters.

The obtained comparative table presents model
evaluations based on training for 1000 iterations
using the provided training data:

Metric LGBM XGBoost
RMSE 0.47667 0.47778
MAE 0.35779 0.35897
R-squared 0.59461 0.59274
Time, s 810.24768 2116.68744

Table 1. Model Performance Comparison

In order to show that the distribution of the real
price and the model are quite similar, we visual-
ized the entire sample, 1000 items and 100 items,
which is the most representative.

Figure 2. Distributions of prices

12 ISSN 2617-7080. Могилянський математичний журнал. 2023. Том 6

Where real prices are shown in blue, predicted
by LightGBM in pink and predicted by XGBoost
in green.

Conclusion

As a result of this work, we built a model for
predicting the price of a product without a history
based on its characteristics and data on nearby
similar products using the LightGBM method on
the example of a real data set from Mercari -
one of the most popular C2C marketplaces on the
Japanese market. We have shown what is the nov-
elty of the LightGBM method and how these new
algorithms work, pseudo-codes are provided. The
obtained results showed that the model using the

LightGBM method provides sufficiently high accu-
racy of forecasting the product price without his-
tory compared to other models, and also works
many times faster. Thus, the study confirms the
effectiveness of using the LightGBM method for
price prediction. The results of the study may be
useful to companies wishing to develop automated
recommender systems for a historical commodity
price forecasting model. As a further development
in this research, several improvement ideas can be
tried, such as explore ensemble methods by com-
bining the predictions of multiple models, includ-
ing LightGBM, to potentially achieve even higher
accuracy. Techniques such as stacking or blending
can be employed.

References

1. Chen Tianqi and Guestrin Carlos, “XGBoost: A Scal-
able Tree Boosting System,” Association for Computing
Machinery. 10, 785–794 (2016).

2. Ke Guolin, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu,
“LightGBM: A Highly Efficient Gradient Boosting De-
cision Tree,” NIPS (2017).

3. N. Dunbray, R. Rane, S. Nimje, J. Katade, and S.
Mavale, “A Novel Prediction Model for Diabetes Detec-
tion Using Gridsearch and A Voting Classifier between
Lightgbm and KNN,” 2021 2nd Global Conference for
Advancement in Technology (GCAT), Bangalore, In-

dia, 1–7 (2021).
4. C. Davide, J. Warrens, and G. Jurman. “The coeffi-

cient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in re-
gression analysis evaluation,” PeerJ Computer Science.
7 (2021).

5. C. Shannon, “A Mathematical Theory of Communica-
tion,” Bell System Technical Journal. 27 (3), 379–423
(1948).

6. Robert E. Schapire, and Yoav Freund, “Boosting:
Foundations and algorithms, ” Kybernetes. 42 (1),
164–166 (2013).

Крючкова А. О., Толокнова В. В., Дрiнь С. С.

ПРОГНОСТИЧНА МОДЕЛЬ ДЛЯ ПРОДУКТУ БЕЗ
IСТОРIЇ З ВИКОРИСТАННЯМ LightGBM

Статтю присвячено розробцi прогнозної моделi цiноутворення за допомогою LightGBM. Та-
кож метою було адаптування методу LightGBM для задач регресiї та, особливо, задач прогно-
зування цiни продукту без iсторiї, тобто з холодним стартом.

Стаття мiстить необхiднi поняття для розумiння принципiв роботи методiв з посиленим
градiєнтом, таких як дерева рiшень, бустинг, випадковi лiси, градiєнтний спуск, GBM (машина
посилення градiєнта), GBDT (дерева рiшень градiєнтного пiдвищення). У статтi наведено iн-
формацiю про алгоритми, якi використовуються для пошуку точок розбиття, з акцентом на
алгоритм на основi гiстограм.

LightGBM покращує алгоритм градiєнтних методiв, запроваджуючи автоматичний меха-
нiзм вибору функцiй, придiляючи особливу увагу точкам посилення, що характеризуються бiльш
вагомими градiєнтами. Це може призвести до значно швидшого навчання та покращення ефе-
ктивностi передбачення. Описано методи односторонньої вибiрки на основi градiєнта (GOSS) i
ексклюзивного пакетування функцiй (EFB), якi використовують для вдосконалення LightGBM.

Робота мiстить експериментальне дослiдження. Щоб перевiрити LightGBM, було взято ре-
альний набiр даних одного японського ринку C2C iз сайту Kaggle. У практичнiй частинi було
проведено порiвняння продуктивностi LightGBM i XGBoost (Extreme Gradient Boosting Machine).
У результатi було виявлено лише незначне пiдвищення в оцiнках продуктивностi (RMSE, MAE,
R-squard) LightGBM порiвняно з XGBoost, однак iснує помiтний контраст у часовiй ефективно-
стi в процедурi навчання. LightGBM демонструє майже втричi бiльшу швидкiсть порiвняно з
XGBoost, що робить його кращим вибором для роботи з великими наборами даних.

S. Drin, A. Kriuchkova, V. Toloknova. Predictive model for a product without history using LightGBM 13

Цю статтю присвячено розробцi та впровадженню моделей машинного навчання для цiно-
утворення продуктiв за допомогою LightGBM. Включення автоматичного вибору функцiй, зо-
середженiсть на прикладах iз високим градiєнтом i таких методах, як GOSS i EFB, демон-
струють унiверсальнiсть i ефективнiсть моделi. Такi прогнознi моделi допоможуть компанiям
покращити свої моделi цiноутворення на новий товар. Швидкiсть отримання вiдповiдного про-
гнозу для кожного елемента бази є вкрай актуальною в час швидкого накопичення даних.

Ключовi слова: GBM, GBDT, LightGBM, GOSS, EFB, прогнозна модель.

Матерiал надiйшов 27.12.2023

Creative Commons Attribution 4.0 International License (CC BY 4.0)

