DOI: https://doi.org/10.18523/2617-7080i2018p11-14
Побудова коспектральних графiв вiдносно узагальненої матрицi сумiжностi
Анотація
Ключові слова
Повний текст:
PDFПосилання
Günthard, H. H., & Primas, H. (1956). Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta., 39, 1645–1653. https://doi.org/10.1002/hlca.19560390623
Collatz, L., & Sinogowitz, U. (1957). Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg, 21, 63–77.https://doi.org/10.1007/bf02941924
Cvetkovich, D. M. (1971). Graphs and their spectra. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 354–356, 1–50.
Schwenk, A. J. (1973). Almost all trees are cospectral. In F. Harary (Ed.), New Directions in the Theory of Graphs (pp. 275–307). New York: Academic Press.
Johnson, C. R., & Newman, M. (1980). A note on cospectral graphs. J. Combin. Theory B, 28, 96–103.
Cvetković, D. M., Doob, M., & Sachs, H. (1995). Spectra of Graphs. (3rd ed.). Heidelberg: Johann Ambrosius Barth Verlag.
Godsil, C., & Mckay, B. (1976). Some computational results on the spectra of graphs. In L. R. A. Casse, & W. D. Wallis (Eds.), Combinatorial Mathematics IV (pp. 73–92). Berlin: Springer-Verlag volume 560. https://doi.org/10.1007/bfb0097370
van Dam, E. R., & Haemers, W. H. (2003). Which graphs are determined by their spectrum? Linear Algebra and its Applications, 373, 241–272. https://doi.org/10.1016/s0024-3795(03)00483-x
Copyright (c) 2018 Daria Grushka, Viktoriia Lebid

Ця робота ліцензована Creative Commons Attribution 4.0 International License.