DOI: https://doi.org/10.18523/2617-7080i2018p38-48

Скiнченнi локальнi майже-кiльця

Iryna Raievska, Maryna Raievska

Анотація


У статтi здiйснено огляд сучасного стану дослiдження скiнченних локальних майже-кiлець, а саме їх похiдних структур — адитивної та мультиплiкативної груп. Наведено класифiкацiю локальних майжекiлець, порядок яких не перевищує 32.

Ключові слова


локальне майже-кiльце; майже-кiльце з одиницею; адитивна група; мультиплiкативна група

Повний текст:

PDF

Посилання


Dixon, L. (1905). Definitions of a group and a field by independent postulates. Trans. Amer. Math. Soc., 6, 198–204.

Zassenhaus, H. (1935/36). Über endliche Fastkörper. Abh. Math. Sem., Univ. Hamburg, 11, 187–220.

Veblen, O., & Wedderburn, J. H. (1907). Non-desarguesian and non-pascalian geometrie. Trans. Amer. Math. Soc., 8, 379–388. https://doi.org/10.1090/s0002-9947-1907-1500792-1

Kholl, M. (1962). Teoryia hrupp. Moskva: Yzdatelstvo ynostrannoi lyteratury.

Wähling, H. (1987). Theorie der Fastkörper. Essen: Thales Verlag.

Ore, Q. (1931). Linear equations in non-commutative fields. Ann. of Math., 32, 463–477.

Furtwangler, P., & Taussky-Todd, O. (1936). Über Schiefringe. Sitzber. Akad. Wiss. Wien, Math. Nat. Klasse, Abt. IA., 145, 525.

Taussky-Todd, O. (1936). Rings with non-commutative addition. Bull. Calcutta Math. Soc., 28, 245–246.

Blackett, D. W. (1953). Simple and semi-simple near-rings. Proc. American Math. Soc., 4, 772–785. https://doi.org/10.1090/s0002-9939-1953-0057844-9

Neumann, H. (1954). Near-rings connected with free groups. In Proc. International Conference (pp. 46–47). Amsterdam.

Neumann, H. (1956). On varieties of groups and their assotiated near-rings. Math. Z., 65, 36–69.

Betsch, G. (1962). Ein Radikal für Fastringe. Math. Z., 78, 86–90. https://doi.org/10.1007/bf01195153

Beidleman, J. C. (1967a). On the theory of radicals of distributively generated near-rings. I. The primitive-radical. Math. Annalen., 173, 89–101. https://doi.org/10.1007/bf01363891

Beidleman, J. C. (1967b). On the theory of radicals of distributively generated near-rings. II. The nil-radical. Math. Annalen., 173, 200–218.

Pilz, G. (1977). Near-rings. The theory and its applications. Amsterdam: North Holland. https://doi.org/10.1007/bf01361711

Meldrum, J. D. P. (1985). Near-rings and their links with groups. London: Pitman Publishing Limited.

Clay, J. R. (1992). Nearrings. Geneses and Applications. New York: Oxford University Press.

Ferrero, C. C., & Ferrero, G. (2002). Nearrings. Some developments linked to semigroups and groups. Dordrecht: Kluwer Academic Publishers.

Kaluzhnyn, L. A., & Sushchanskyi, V. Y. (1978). Verbalnye funktsyy na hruppakh. In Teoretycheskye y prykladnye voprosy dyfferentsyalnykh uravnenyi y alhebra : sb. nauch. tr. (pp. 105–110). Kyev: Nauk. dumka.

Clay, J. R., & Malone, J. (1966). The near-rings with identities on certain finite groups. Math. Scand., 19, 146–150. https://doi.org/10.7146/math.scand.a-10803

Clay, J. R., & Doi, D. (1968). Near-rings with identity on alternating groups. Math. Scand., 23, 54–56. https://doi.org/10.7146/math.scand.a-10896

Ligh, S. (1971). Near rings with identities on certain groups. Monatsh. Math., 75, 38–43.

Krimmel, J. E. (1973). A condition on near-rings with identity. Monatsh. Math., 77, 52–54.

Clay, J. R. (1970). Research in near-ring theory using a digital computer. BIT, 10, 249–265. https://doi.org/10.1007/bf01934196

Clay, J. R., & Maxson, C. J. (1970). The near-rings with identities on generalized quaternion groups. Ist. Lombardo Accad. Sci. Lett. Rend. A., 104, 525–530.

Johnson, M. J. (1973). Near-rings with identities on dihedral groups. Proceedings of the Edinburgh Mathematical Society, 18, 219–228. https://doi.org/10.1017/s0013091500009950

(2018). GAP — Groups, Algorithms, and Programming, Version 4.8.10. URL: https://www.gap-system.org.

Boykett, T., & Nöbauer, C. (1998). A class of groups which cannot be the additive groups of near-rings with identity. In Contributions to general algebra 10: Proceedings of the Klagenfurt Conference (pp. 89–99). Klagenfurt: Heyn.

Miller, G. A., & Moreno, H. (1903). Non-abelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc., 4, 398–404. https://doi.org/10.1090/s0002-9947-1903-1500650-9

Redei, L. (1947). Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören. Comment. Math. Helv., 20, 225–264. https://doi.org/10.1007/bf02568131

Raievska, I. Yu., & Raievska, M. Yu. (2014). Finite nearrings with identity on Miller — Moreno groups. Mat. Stud., 42, 15–20. https://doi.org/10.18523/2617-7080i2018p38-48

Shmydt, O. Yu. (1924). Hruppy, vse podhruppy kotorykh spetsyalnye. Mat. sb., 31, 366–372.

Huppert., B. (1967). Endliche gruppen I. Berlin, Heidelberg, New York: Springer-Verlag.

Raievska, I. Yu., & Raievska, M. Yu. (2017). Adytyvni hrupy skinchennykh maizhe-kilets z odynytseiu. In Mizhnarodna konferentsiia molodykh matematykiv, prysviachena 100-richchiu z dnia narodzhennia akademika NAN Ukrainy Yu. O. Mytropolskoho (1917–2008). Tezy dopovidei. (p. 20). Kyiv: Instytut matematyky NAN Ukrainy.

Maxson, C. J. (1968b). On local near-rings. Math. Z., 106, 197–205.

Amberg, B., Hubert, P., & Sysak, Ya. (2004). Local near-rings with dihedral multiplicative group. J. Algebra, 273, 700–717. https://doi.org/10.1016/j.jalgebra.2003.10.007

Maxson, C. J. (1968a). Local near-rings of cardinality p^2. Canad. Math. Bull., 11, 555–561.

Maxson, C. J. (1970). On the construction of finite local near-rings (I): on non-cyclic abelian p-groups. Quart. J. Math. Oxford (2), 21, 449–457. https://doi.org/10.1093/qmath/21.4.449

Maxson, C. J. (1971). On the construction of finite local near-rings (II): on non-abelian p-groups. Quart. J. Math. Oxford (2), 22, 65–72.https://doi.org/10.1093/qmath/22.1.65

Feigelstock, S. (2006). Additive groups of local near-rings. Comm. Algebra, 34, 743–747. https://doi.org/10.1080/00927870500388042

Sysak, Ya. P. (2008). Products of groups and local nearrings. Note di Mat., 28, 179–213.

Raievska, I. Yu., & Raievska, M. Yu. (2013). Lokalni maizhe-kiltsia z obmezhenniamy na multyplikatyvni hrupy ta pidhrupy neoborotnykh elementiv. Naukovyi chasopys NPU imeni M. P. Drahomanova. Seriia 1. Fizyko-matematychni nauky, (pp. 134–145).

Raievska, I. Yu., & Sysak, Ya. P. (2012). Finite local nearrings on metacyclic Miller — Moreno p-groups. Algebra Discrete Math., 13, 111–127.

Raievska, I. Yu. (2011a). Lokalni maizhe-kiltsia na nemetatsyklichnii p-hrupi Millera — Moreno. Visn. Kyiv. un-tu. Matematyka. Mekhanika, 25, 43–45.

Raievska, I. Yu., Raievska, M. Yu., & Sysak, Ya. P. (2012). Lokalni maizhe-kiltsia na nemetatsyklichnykh hrupakh Millera — Moreno. Visn. Kyiv. un-tu. Seriia: fiz.-mat. nauky, 3, 39–46.

Raievska, I. Yu., Raievska, M. Yu., & Sysak, Ya. P. (2016b). Finite local nearrings with split metacyclic additive group. Algebra Discrete Math., 22, 129–152. https://doi.org/10.18523/2617-7080i2018p38-48

Gilmer, R. W. (1963). Finite rings, having a cyclic group of units. Amer. J. Math., 85, 447–452. https://doi.org/10.2307/2373134

Ligh, S. (1978). Finite hereditary near-field groups. Monatsh. Math., 86, 7–11. https://doi.org/10.1007/bf01300053

Gorodnik, A. (1999). Local near-rings with commutative groups of units. Houston J. Math., 25, 223–234.

Hubert, P. (2005). Nearrings and a construction of triply factorized groups. dis. ... Doktor der Naturwissenschaften am Fachbereich Physik, Mathematik und Informatik Mainz.

Sysak, Ya. P., & Termini, S. D. (2007). Local nearrings with generalized quaternion multiplicative group. Ricerche Mat., 56, 61–72. https://doi.org/10.1007/s11587-007-0005-6

Raievska, I. Yu., & Raievska, M. Yu. (2010). Maizhe-polia z neabelevo spadkovymy multyplikatyvnymy hrupamy. Mat. studii, 34, 38–43.

Raievska, M. Yu., & Sysak, Ya. P. (2012). Pro lokalni maizhe-kiltsia z multyplikatyvnoiu hrupoiu Millera — Moreno. Ukr. mat. zhurn., 64, 811–818.

Raievska, M. Yu. (2011b). Lokalni maizhe-kiltsia z multyplikatyvnoiu hrupoiu Millera — Moreno. Visn. Kyiv. un-tu. Matematyka. Mekhanika, 25, 45–48.

Raievska, I. Yu., Raievska, M. Yu., & Sysak, Ya. P. (2016a). Finite local nearrings with multiplicative Schmidt group. In XI International School-Conference on Group Theory, dedicated to the 70th anniversary of A. Yu. Olshanskii. Abstracts (pp. 78–79). Krasnoyarsk: Siberian Federal University. https://doi.org/10.18523/2617-7080i2018p38-48

Aichinger, E., Binder, F., Ecker, J., Mayr, P., & Nöbauer, C. (2015). SONATA — system of near-rings and their applications, GAP package, Version 2.8. URL: http://www.algebra.uni-linz.ac.at/Sonata/.






Copyright (c) 2018 Iryna Raievska, Maryna Raievska

Creative Commons License
Ця робота ліцензована Creative Commons Attribution 4.0 International License.