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A DISCRETE REGULARIZATION METHOD
FOR HIDDEN MARKOV MODELS EMBEDDED INTO
REPRODUCING KERNEL HILBERT SPACE

Hidden Markov models are a well-known probabilistic graphical model for time series of discrete, partially
observable stochastic processes. We consider the method to extend the application of hidden Markov models
to non-Gaussian continuous distributions by embedding a priori probability distribution of the state space
into reproducing kernel Hilbert space. Corresponding regularization techniques are proposed to reduce the
tendency to overfitting and computational complexity of the algorithm, i.e. Nystrom subsampling and the general
regularization family for inversion of feature and kernel matrices. This method may be applied to various
statistical inference and learning problems, including classification, prediction, identification, segmentation,
and as an online algorithm it may be used for dynamic data mining and data stream mining. We investigate,
both theoretically and empirically, the regularization and approximation bounds of the discrete regularization
method. Furthermore, we discuss applications of the method to real-world problems, comparing the approach

to several state-of-the-art algorithms.

Keywords: hidden Markov model, data stream mining, reproducing kernel Hilbert space, online algorithm,

regularization.

Introduction

Development of proper models for time series
of stochastic semi-observable processes is crucial for
solving a wide variety of problems in the learning the-
ory. Most of the observed data from the system does
not depict the true states but rather noisy variates of
them. Moreover, the observed state space is generally
only a subset of the true state space, as the sensory
equipment of most systems is limited.

Hidden Markov models (HMM) are applied to
various learning problems, including prediction, clas-
sification, clustering, identification, segmentation, re-
inforcement learning, pattern recognition, time series
change point detection, and as an online algorithms
they are widely used for dynamic data stream min-
ing [1; 2]. A basic assumption for HMM is that
to obtain a current hidden state we need only a
fixed number of preceding hidden states (Markovian
property for the transition model), and an observation
depends conditionally on its corresponding hidden
state (the observation model). Accordingly, HMM
has a bunch of disadvantages, among which a large
number of unstructured parameters, limitations caused
by Markov property for the first order HMMs, and the
most critical is that only a small portion of distributions
may be represented by HMM due to the assumption
of discrete number of hidden states.

A well established concept that extends the ideas
of HMM s to continuous domains is the Kalman filter
(KF), which assumes the linear system dynamics and
represents the state as a Gaussian random variable.
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Considering non-linear system dynamics by means of
its sequential linearization leads to Extended Kalman
filter (EKF), assuming zero mean multivariate Gaus-
sian noises for transition and observation models. As
a further step to address complex problems with non-
linear models and non-Gaussian noise, the particle fil-
ter has been proposed. The particle filter is a technique
for implementing recursive Bayesian filter by Monte
Carlo sampling representing the posterior density by
a set of random particles with associated weights;
thereby, estimates are computed based on these sam-
ples and weights. Despite its undoubted ability to rep-
resent arbitrary densities and deal with non-Gaussian
noise, there is a list of disadvantages of the particle
filter, among which high computational complexity,
difficulties while determining the optimal number of
particles, the number of particles increase with the
increasing model dimention, a vital role of the proper
importance density choice, and the necessity of resam-
pling to avoid a potential risk of degeneracy and the
loss of diversity. Various modifications of the particle
filter have been proposed; nevertheless, there is still
a research challenge to develop an optimal algorithm
with a reduced complexity.

In our study we consider a nonparametric HMM
that extends traditional HMMs to structured and non-
Gaussian continuous distributions by means of embed-
ding HMM into Reproducing Kernel Hilbert Space
(RKHS). Much recent progress has been made for
Hilbert space embedding in probabilistic distributions
and their application to HMM [3-7]. Due to interfer-
ence and ill-posedness of the inverse problem arising at
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learning embedded HMM into RKHS, regularization
is required. The proposed training algorithms [3; 4; 6]
use Lj, Lo and truncated spectral regularization to
invert the corresponding kernel matrix. In our re-
search, we consider more general regularization tech-
niques [8], a discrete regularization method [9], specif-
ically, Nystrom-type subsampling [10]. Moreover, si-
multaneous regularization by means of Nystrom-type
subsampling and improved optimization technique en-
able us to use this approach for online algorithms.

This paper is organized as follows. In Section 2 we
develop and study the basic structure and theoretical
background of the method. Section 3 describes the
experimental framework used to evaluate the perfor-
mance, the pro’s and con’s of the method.

Embedding HMM into RKHS

In the standard type of HMM, there is a hidden
random variable x(t), z(t) € {«},z%,... 2!} and
random variable y(¢) of the corresponding observation
at time . HMM is defined by emission probabilities
P(y(t)|z(t)), transition probabilities P(xz(t)|z(t— 1))
and initial state probabilities. To train HMM gener-
ally Viterbi training or expectation-maximization (EM)
algorithm are used. A priori assumptions on the dis-
tribution model (i.e. Gaussian mixture) lead to nar-
rowing the suite of considered probability densities.
Employment of RKHS embedding for probability dis-
tributions allows the generalization of machine learn-
ing methods to arbitrary probability densities, not only
Gaussian ones, by providing a uniform representation
of functions and, consequently, probability densities
as elements of a RKHS.

Here we briefly remind method for RKHS em-

bedding for distributions and HMM described in
[5; 11; 12].
Definition 1. RKHS is a Hilbert space of functions
f : © — R with a scalar product (-, -) that is implicitly
defined by Mercer kernel function k : 2 x 2 — R as
(p(x), o(y)) = k(x,y), where p(zx) is a feature map-
ping into space corresponding to the kernel function.
According to reproducing property Vo € X, Vf € H
(f,k(-,2))3 = f(x) we have for any element f from
RKHS f(y> = Zie] O‘ik(xivy)’ a; € R.

Kernel functions have been thoroughly explored
since initiative paper [13], and they have been de-
fined on various structured objects, such as strings and
graphs, although standard Gaussian radial basis func-
tion kernel is widely used as well.

Joint and conditional distributions may be embed-
ded into a RKHS and manipulate the probability den-
sities, by means of the chain, sum and Bayes’ rule,
entirely in Hilbert space.

Remark 1. Given a set of feature mappings ® =
= [e(x1),...,¢(zm)] any distribution ¢(x) may be
embedded as a linear combination ji, = ®3, with

weight vector 5 € R™. The mean embedding of a
distribution can be used to evaluate expectation of any
function f in the RKHS, e.g. if f = ®q, then

Eq[f(@)] = (fiq, f) = (2B, ) =
=3T3 "da = "Ka,

where K = @ ® is Gramian matrix, K;; = k(x;, ;).
Theorem 1 ([5]). Assume k(x,2’) is bounded. With
probability 1 — §

i = tqllze = O(m™/2/Tog?).

Now we are ready to consider RKHS embedding
for HMM.
Definition 2. Assuming RKHS F with kernel
k(z,z') = (p(z),p(z'))+ defined on the obser-
vations, and RKHS G with kernel [(h,h') =
= (¢(h),p(h'))g defined on the hidden states, ob-
servable operator A, : G — G is defined as

Azd(he) = p(X¢ = x|he) By, gn, [O(Hig1))-

The observation operator is defined as a conditional
operator Cx, ,m,,., = Cx, u, that maps distribution
function over hidden states embedded into G to a dis-
tribution function over emissions embedded in F.

Straightforward from Theorem 1 we have
Corollary 2. Assume k(z,2') and Il(xz,2') are
bounded. Then with probability 1 — ¢

[Cxy — CxvllFag = O(mfl/Q\/f logé).

For conditional embedding operator use of regular-
ization is needed. Thus, for Tikhonov regularization
and given regularization parameter A we have
Corollary 3. Assume k(z,z') and [l(z,2’) are
bounded. Then with probability 1 — 0

. [—logéd
m

The appropriate value of regularization parameter
A may be selected by means of classical approaches,
such as Morozov’s discrepancy principle, or by using
Linear Functional Strategy considered in [14]. More-
over, other regularization techniques may be success-
fully applied for regularization, such as Nystrom sub-
sampling [10] or regularization family {gx} [15].
Definition 3 ([15], Definition 2.2). A family {g,} is
called a regularization on [0, a] if there are constants
Y—1,Y-1/2,70 for which

sup |1 —tgx(t)| < o,
0<t<a

sup [ga(t)] <
0<t<a

sup Vi[ga(t)] <
0<t<a

)

-1
A

Y-1/2

7
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It is clear that by taking gx(t) = (t + \) ™! we get
widely used regularized matrix inversion. Note that
ga(t) = + for t > A, and 0 otherwise, corresponds to
the regularization by means of spectral cut-off scheme.
For details on regularization families and correspond-
ing approximation bounds we refer to [15].

Nystrom subsampling is a learning scheme applied
in RKHS setting for matrix inversion, where the ker-
nel matrix is replaced with a smaller matrix obtained
by column subsampling [16; 17]. Note, that arbitrary
regularization family may be applied after Nystrom
subsampling.

This approximation-preserving reduction allows us
to extend Corollary 3 to general regularization scheme
and gives us an estimation of the emission probabil-
ity distribution with an approximation error of order
O\'2 4 (Am)~1/2).

In order to evaluate transition probability distri-
bution, we use Algorithm 1 and Theorem 1 from [5]
extended for a general regularization scheme that gives
us bound for

H:uX(tJrl)\{X(l),X(2)....,X(t)} -

o (t41) [{x (1), X (2),... x ()} | 7

of order
O(t(A'? + (Am)~1/?)).

In order to reduce the computational complexity,
for each of kernel matrices used in Algorithm 1 [5],
we apply Nystrom subsampling, considering instead of
m x m matrix m’ x m for m’ < m that reduces kernel
matrix construction complexity from quadratic to sub-
quadratic preserving approximation bounds. Note also
that embedding into RKHS reduces training and appli-
cation of HMM to linear operations for the kernel and
feature matrices for the fixed sampling basis, which
consequently reduces the computational complexity.

Note that for some regularization methods, such
as Tikhonov regularization, Moore-Penrose pseudo-
inverse is used. Combining this approach with
Nystrom subsampling allows to adopt unlabeled sam-
ples to the kernel matrix construction, enabling semi-
supervised learning for a suitable kernel.

Applications

The need for online denoising and data stream seg-
mentation occurs in various real-life problems. For
various health-care problems it becomes vital, i.e.
for nocturnal hypoglycemia prevention for diabetis
patients wearing either continuous glucose monitor-
ing devices or self-monitoring glucometers [18; 19].
In [12] applications of embedded HMM in RKHS to
robot vision, slot car inertial measurement and audio
event classification were shown as exceeding previous
state-of-the-art solutions, including ordinary HMM as

well. We conducted sets of expretiments to evaluate
the effectiveness of learning embedded HMMs into
RKHS for real-world prediction and filtering tasks.

Map Matching. Widely used applications such as
traffic sensing, the routing time prediction and recom-
mendations require a reliable online localization algo-
rithm. Due to various errors of sensors, imprecise
measurements, and imperfect maps, state-of-the-art
online map-matching algorithms employ HMMs [20].
Most existing approaches use Viterbi algorithm, us-
ing various sliding windows to improve performance.
In HMM-based map-matching algorithms, candidate
paths are sequentially generated and evaluated on the
basis of their likelihood. When a new trajectory point
is acquired, past hypotheses of the map-matched route
are extended to account for the new observation.

One of the advantages of the approach is the cor-
responding likelihood estimation, which can be con-
sidered as a way for uncertainty quantification. In
this setting, to meet the requirement of HMM on a
limited state space, for each observation point only a
fixed number of position candidates are considered.
It leads to considering only one candidate on each
map-graph edge (as a rule, the closest one to the ob-
servation point). Moreover, emission and transition
probabilities for HMM are predetermined by the au-
thors, and tuning of corresponding parameters is re-
quired. It respectively implies distinctive drawbacks,
such as cutting-off the angle at crossroads, extra U-
turns, back-and-forth jumps on a road segment, etc.

For our experiments, we need accurate dataset with
noised and ground-truth positions. To generate it we
used traffic simulator SUMO — Simulation of Urban
MObility [21] and OpenStreetMap data [22]. It en-
ables us to generate accurate map ground-truth posi-
tions (taking into account road network information
from OpenStreetMap), corresponding exact GPS posi-
tions, and model other observations. Then we added
noise to these accurate observations. Noise was mod-
elled according to our assumptions and evaluated on
a known dataset [23]. An online algorithm was set as
a sequence of trajectory reconstructions for a sliding
window of up to 50 previous observation points (to
limit the number of layers in corresponding HMM).

Performance was measured in terms of accuracy
(hitting the correct road-segment) and RMSE for the
point-to-point correspondence of map-matched and
ground-truth positions. As a baseline we used [23]
algorithm (with heuristics for probability distribution
assumptions). For our algorithm, we used 50 tra-
jectories for training HMM, and then applied it for
the following trajectories. For training we applied
RKHS with Gaussian kernel with various values of
o € {0.5,1,5,10}, and applied Linear Functional
Strategy [14] while converting kernel matrices. For
baseline and proposed algorithm outputs we compared
the accuracy (hit rate, value from 0 to 1) and RMSE for
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point-to-point correspondences in meters. The results
are presented in Table 1.

Table 1. Performance of baseline algorithm (BL)
and implemented algorithm (EHMM) in terms
of accuracy and RMSE

Accuracy RMSE
BL | EHMM BL | EHMM
min | 0.01 0.07 3.71 0.07
max || 0.73 0.98 19.58 | 16.94
mean || 0.26 0.66 13.14 6.08
std 0.18 0.21 3.88 4.34

We observe a dramatic improvment of performance
for the proposed algorithm. Here we have to no-
tice that the baseline’s performance suffers because
of fixed heuristics appied for determining the emis-
sion and transition probability distribution of HMM.
Re-trained HMM by means of EM algorithm (Gaus-
sian mixture) shows a better performance, although
the implemented algorithm (EHMM) outperforms it
as well; apparently it is because of a implicit ensem-
ble of Gaussian kernels in the implemented solution.

Seizure prediction on Electroencephalography
signal. The electroencephalography (EEG) is a crucial
tool for monitoring brain activity in various clinical
applications. The typical EEG data contains a set of
signals measured with electrodes placed on the human
scalp. The brain state recognition from EEG signals
requires specific signal processing and pre-processing,
features extraction, and classification tools. For more
details on experiment setting we refer to [24].

We evaluate our approach on seizure prediction on
Electroencephalography (EEG) signal. As a hidden
variable we consider seizure risk, and observation is
given by EEG signal and processed cumulative fea-
tures for a given sliding time-interval.

1
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Figure 1. Accuracy of seizure prediction depending on
prediction of time-horizon for baseline algorithm (blue)
and proposed method (red)

In [24] we applied a ranking algorithm for seizure
risk prediction, and achieved the successive prediction
rate of approximately 83% for the time horizon up to 1
minute. That algorithm requires a lot of pre-processing

and calibration, therefore it could not be considered
as a real-time application. In our current investiga-
tion we applied embedding of HMM in RKHS for
a corresponding hidden state and observation model.
We’ve achieved the same accuracy for the same time
horizon (see Figure 1), whereas performance increased
dramatically.

Temporal Audio Segmentation. Embedding of
HMM into RKHS with Tikhonov regularization was
studied in [3], although without implicit naming. In [3]
experimental results were presented both on segmen-
tation of the whole audio track from a TV show and on
the speaker diarization within the interview segments.
Namely, two soundtracks of the French 1980s enter-
tainment TV-shows (“Le Grand Echiquier”) of approx-
imately three hours each, labelled with characteristic,

“applause”, “movie”, “music”, “speech”, “speaker
turns . After data preprocessing, every 10 ms of au-
dio where matched to a 13-dimentional vector. The
experimental results from [3] are presented in Table 2,
where the following methods were compared: regular-
ized kernel Fisher discriminant ratio (KFDR), which
is basically embedded HMM with truncated spectral
regularization, Maximum Mean Discrepancy (MMD),
Kernel Change Detection (KCD) algorithms and stan-
dard supervised HMM.

Table 2. Best Precision and Recall for benchmarked
methods, for both semantic segmentation and speaker
segmentation tasks [3]

Semantic Speaker
segmentation segmentation
Precision Recall || Precision Recall
KFDR 0.72 0.63 0.89 0.90
MMD 0.71 0.58 0.76 0.73
KCD 0.65 0.63 0.78 0.74
HMM 0.73 0.65 0.93 0.96

The authors mention in [3] that HMM outperforms
all the algorithms, but it is explained by a rather un-
realistic training procedure, as all speakers and possi-
ble labels involved are explicitly modelled beforehand
in the speech sections, whereas the proposed method
demonstrated competitive performance with a com-
pletely unsupervised approach.

Unfortunately, we did not manage to find the men-
tioned dataset to reproduce the results. Therefore, we
applied the same preprocessing technique to dataset
Jakobovski/free-spoken-digit-dataset v1.0.7 (Zohar
Jackson, César Souza, Jason Flaks, Hereman Nicolas,
https://doi.org/10.5281/zenodo.1136198). The Free
Spoken Digit Dataset consists of 1500 audio records
in WAV files at 8kHz of English pronunciations of
digits by 3 speakers (50 of each digit per speaker).
A corresponding digit is easily labelled, as each file
is named in the following format: {digitLabel}
{speakerName}_{index} .wav.
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We split the preprocessed dataset into training and
testing sets, as it was proposed by its owners, namely
10% (records with indices 04 inclusive) of record-
ings for the training set, and 90% for the testing one
(indices 5-49).

In this setting, we compare HMM trained with EM
algorithm, embedded HMM, and embedded HMM
with regularization by means of Linear Functional
Strategy over regularized with Nystrom subsampling

solutions.  Corresponding results are presented in
Table 3.
Table 3. Precision and Recall
for audio segmentation task
Speaker segmentation
Precision Recall
HMM 0.82 0.71
EHMM 0.89 0.78
EHMMN 0.88 0.81
Conclusion

We consider a Hibert space embedding of HMMs
as an extension of traditional HMMSs to continuous
observation distributions. In this setting we apply

more advanced regularization techniques comparing to
Tikhonov regularization. Simultaneous regularization
by means of Nystrom-type subsampling and improved
optimization technique enable us to use this approach
for online data stream mining. Combining Nystrom-
type subsampling and Linear Functional Strategy ap-
parently reduce error and its variation, presumably, due
to the boosting effect, although a detailed investigation
is needed. As further steps of research we consider
multi-penalty regularization for multi-dimentional ob-
servation models. Note that combining modern ker-
nel methods, regularization techniques, and graphical
models significantly improves well-known algorithms,
preserving the advantages of each one.
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Kproxosa I B.

METOJ JUCKPETHOI PETVJIAPU3AILIT 151 IPUXOBAHUX
MAPKOBCHKHX MOJEJIE, 3AHYPEHUX V TUILBEPTIB
IMPOCTIP 13 BIITBOPIOIOYUM SIJIPOM

[IpuxoBaHi MapKOBCBHKI MojIei — J00pe BioMi HMOBIpHICHI rpadhivdHi MOJEII Ul YaCOBUX PSJIIiB TUCKPET-
HHX, YaCTKOBO CIIOCTEPEXYBaHUX CTOXACTHYHUX NpoleciB. MU po3risgaeMo criocid po3IMUPUTH 3aCTOCYBaHHS
IIPUXOBaHUX MapKOBCHKMX MOJIEJIel 1O HErayCOBUX HETIEPEPBHUX PO3IOALIIB 32 JONOMOTOI0 3aHypPEHHS arpiop-
HOTO WMOBIPHICHOTO PO3MOAITY MPOCTOPY CTaHIB y TUIBOEPTIB MPOCTIp i3 BIATBOPIOIOYMM sApoM. Bimmosia-
Hi METOIU perysspu3allii 3amporoHOBAHO [UIS 3MEHIIEHHS CXMIBHOCTI /10 MEpEeHaBYaHHSA Ta OOYHCIIOBAIBHOI
CKJIaJTHOCTI aJITOPUTMY, HAIPHUKIIAA, METON miaBuOipku HicTpoma Ta y3arajipHEHE CIMEHCTBO peryispu3amiiHmux
(YHKIIIH 3aCTOCOBYIOTHCS MiJ] Yac moOyIoBH 0OCPHEHHX SCPHOI Ta 03HAKOBOI MaTpuilb. Llei MeTon Moxke OyTu
BHUKOPHCTAaHHUH y PI3HUX 3a/ladyaX CTaTHCTHYHOTO BHUBEACHH:I, 30KpeMa Kiacudikalii, nepenoayeHus, ixeHTudi-
KaIlii, CerMeHTallii, a TAKOX K OHJIaWH-aJITOPUTM — JJIsl JUHAMI9HO1 00pOOKH JaHMX Ta 00pOOKH OTOKY JaHUX.
Jlami My HaBOIMMO TIPHKIIA 3aCTOCYBAHHS METOY JI0 TIPUKIATHNX 3a]ad, IIOPIBHIOEMO 3alIPOITOHOBAHUH MiAXix
i3 Cy9acHMMH aJITOPUTMaMH.

MeToro IOCIHIIKEHHS € pOo3po0Ka METOMIB peryispu3amii oOepHEHUX 3a/1ad, [0 BUHUKAIOTh Ha CTafil Ha-
BYaHHS HMOBIpHICHUX Tpa(iqHUX MOJENEeH, B SIKUX YSIBICHHS PO PO3MOALI 3aHYpEHO B TUIHOEPTIB MPOCTIp i3
BiITBOpIOOUUM siipoM. OCHOBHOIO METOAMKOIO pealtizallii € 3aCTOCYBaHHS y3arajlbHEHOTO CiIMEHCTBA PETYIspH-
3amifHuX (QYHKITH Ta TUCKPETHOT peryspu3aiii, 30kpema Mmeton Hictpoma, 10 BiMOBITHUX 0O0EpHEHHX 3aJ1ad
obepTaHHA MaTpUIlb sApa Ta O3HAK. 3a/ady BHOOPY BIANMOBIAHMX peryspU3aIlifHNX 3MIHHHX Ta MapameTpiB
sITpa, 10 BH3HAYAE TUTBOEPTIB MPOCTIp, pO3B’s3aHO 3a TOMIOMOTOK METOAY JIiHIHHOT (PyHKIIIOHAIBHOI CTpaTerii,
TOOTO aHCaMOIIO pillleHb, TOOYIOBAHUX 13 PI3HUMHU 3HAYEHHSMH ITapaMeTpiB. Y pe3yibTaTi JOCIIPKEeHHS OTpH-
MaHO TEOPETHYHI anpOKCUMAIINHI OI[IHKH Ta OLIHKH CKJIAJHOCTI allTOPUTMY, a TAKOXK Y TPOIECi YHCEITBHOTO
eKCTIEPHMEHTY 3allPOIIOHOBAHUH MiaXiJ OyiI0 MOPIBHIHO 3 MPOAYKTHBHICTIO 1HIIWX alTOPUTMIB.

KirouoBi ciaoBa: nmprxoBaHa MapKOBChKa MOJEIb, 00pOOKa MOTOKY AaHUX, TUTHOEPTIB MPOCTip i3 BiATBO-
PIOIOYHM SIAPOM, OHJIAHH-AJITOPUTM, PEryJIsSIpH3allis.
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