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ABOUT THE APPROXIMATE SOLUTIONS TO LINEAR
AND NON-LINEAR PSEUDODIFFERENTIAL REACTION
DIFFUSION EQUATIONS

Background. The concept of fractal is one of the main paradigms of modern theoretical and ex-
perimental physics, radiophysics and radar, and fractional calculus is the mathematical basis of fractal
physics, geothermal energy and space electrodynamics. We investigate the solvability of the Cauchy
problem for linear and monlinear inhomogeneous pseudodifferential diffusion equations. The equation
contains a fractional derivative of a Riemann—Liouville time variable defined by Caputo and a pseu-
dodifferential operator that acts on spatial variables and is constructed in a homogeneous, non-negative
homogeneous order, a non-smooth character at the origin, smooth enough outside. The heterogeneity
of the equation depends on the temporal and spatial variables and permits the Laplace transform of the
temporal variable. The initial condition contains a restricted function.

Objective. To show that the homotopy perturbation transform method (HPTM) is easily applied to
linear and nonlinear inhomogeneous pseudodifferential diffusion equations. To prove the solvability and
obtain the solution formula for the Cauchy problem series for the given linear and nonlinear diffusion
equations.

Methods. The problem is solved by the NPTM method, which combines a Laplace transform with a
time variable and a homotopy perturbation method (HPM). After the Laplace transform, we obtain an
integral equation which is solved as a series by degrees of the entered parameter with unknown coefficients.
Substituting the input formula for the solution into the integral equation, we equate the expressions
to equal parameter degrees and obtain formulas for unknown coefficients. When solving the nonlinear
equation, we use a special polynomial which is included in the decomposition coefficients of the nonlinear
function and allows the homotopy perturbation method to be applied as well for nonlinear non-uniform
pseudodifferential diffusion equation.

Results. The result is a solution of the Cauchy problem for the investigated diffusion equation, which
is represented as a series of terms whose functions are found from the parametric series.

Conclusions. In this paper we first prove the solvability and obtain the formula for solving the Cauchy
problem as a series for linear and nonlinear inhomogeneous pseudodifferential equations.

Keywords: Laplace transform, Homotopy perturbation transform method, fractional reaction-
diffusion equation, Caputo time-fractional derivative, pseudodifferential operator.

Introduction

The concept of fractal is one of fundamental
paradigms of modern theoretical and experimen-
tal physics, radio physics and radar, and frac-
tional calculus is the mathematical basis of fractal
physics, geothermal energy and cosmic electrody-
namics.

In recent years, fractional reaction-diffusion
models are studied due to their usefulness and im-
portance in many areas of science and engineer-
ing. The reaction-diffusion equations arise nat-
urally as description models of many evaluation
problems in the real world, such as the chem-
istry [1, 2], biology [3], finance [4-6] and hydrology
[7]. Burke at [8] obtained solutions for enzyme-
suicide substrate reaction with an instantaneous
point source of substrate. In 1993 Grimson and
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Barker [9] introduced a continuum model for the
spatio-temporal growth of bacterial colonies on the
surface of a solid substrate with utilizes a reaction-
diffusion equation for growth. Many cellular and
sub-cellular biological processes [10] can be de-
scribed in terms of diffusing and chemically react-
ing species (e.g. enzymes). A traditional approach
to the mathematical modelling of such reaction-
diffusion processes is to describe each biochemi-
cal species by its (spatially depend) concentration.
Recently, interest in fractional reaction-diffusion
equation [11-17] has increased because the equa-
tion exhibits self-organization phenomena and in-
troduces a new parameter, the fractional index into
the equation. Additionally, the analysis of frac-
tional reaction-diffusion equations is of great im-
portance from the analytical and numerical point
of view. In [18] the authors obtain the analyt-
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ical solutions of linear and nonlinear space-time
fractional reaction-diffusion equations on a finite
domain by the application of homotopy perturba-
tion transform method. Numerical results show
that the HPTM is easy to implement and accurate
when applied to linear and non-linear space-time
fractional reaction-diffusion equations.

The Riemann-Liouville fractional integral of or-
der « is defined as [18, p.42, 19]

1 xr
Tefw.t) = o [@= 0 by,

x> a. (1)

The following fractional derivative of order o >
> 0 is introduced by Caputo [20]; see also Kilbas
at all [21] in the form

t
1 / ) (z,7)dr

Fm—a) ) (t—r7)ae"1-m’

m—1<a<m,
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where is the m-partial derivative

o™ f(x,t)
otm
off(x,t) with respect to t.
The Laplace transform of the Caputo derivative

is given by Caputo [20]; see also [21] in form
L{o Dy f(z,t)} = s"L[f (2, )] -

n—1
- Z s (g 04), (m—1<a<m). (3)
r=0
The pseudodifferential operator A this symbol
a(§), € € R™, a(v€) = vPa(€), v > 0, is differen-
tiable when £ # 0, is defined as

Au(t,x) = FZ, a(€) Faselu(t, )],
t>0,zeR", (4)

and F,¢u(t,z)] = v(t,§), &€ € R*, t > 0,
F{ix [v(t,€)] = wu(t,z) are direct and inverse
Fourier transforms respectively [25].

Then a(¢) = |¢€]*(1+]€?)7/2in [22],0 < a < 2,
v > 0, is proof a formula for classical solutions for
time- and space-fractional kinetic equation (also
known as fractional diffusion equation) and devi-
ation time variable is given in terms of the Fox’s
H-function, using the step by step method. These
equations describe fractal properties of real data
arising in applied fields such as turbulence, hydrol-
ogy, ecology, geophysics, air pollution, economics
and finance.

HPTM solutions of linear space-time
fractional reaction-diffusion equation

First we consider the Cauchy problem for
the linear space-time fractional reaction-diffusion
equation in form

oDffu(x, t) = b(x)Au(z, t) — c(z)u(x, t) + f(z,t),
reR"t>0,0<a<], (5)

u(z,0) = p(z),

there operators is defined in (1) — (4), b, ¢, f, p is
known functions [18].

Definition 1. Let 0 < a < 2. Suppose ug €
€ C([0,00) x R™), f € C([0,00)] x R™; C([0, 00) x
x R™)). Then function u € C([0c0) x R™) is a
classical solution of the Cauchy problem (1), (2),
if

1) Fg_lm[(a(é))], Fy_¢[u(t, z)] defines a contin-
uous function of z € R™ for each ¢ > 0 meant as
hypersingular integral [25];

r e R", (6)

2) for every z € R™, the fractional integral, as
defined in (1), is continuously differentiable with
respect to t > 0, and 0 < o < 2.

3) the function wu(t,z) satisfies the integro-
partial differential equation of (1) for every (¢,xz) €
€ (0,00) xR™ and the initial condition (2) for every
x € R™

Taking the Laplace transform on both sides of
(5) and using (6) we get

s*Lu(x,t) — s* 'p(x) =

=b(x)LAu(x,t) — c(x)Lu(x,t) + Lf(x,t)

and
Lu(z,t) = @ + Siab(x)LAu(x,t) - Ci—i)Lu—k
L@ D)), (7)

Applying the inverse Laplace transform on both
sides of (7) we get and

w(a,t) = L [@ + Siab(x)LAu(x,t)—

—%Lu(m,t) + S%Lf(%t)} = p(a)+
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Now we apply the homotopy perturbation
method, that is we are looking for solution of inte-
gral equation (8) as a poser series

oo

u(w,t,p) =Y pun(x,t), 9)

n=0

where up(z,t) are unknown functions, p > 0 is
parameter.
Substituting (9) in (8) we get

Zp"un(w, t) = p(z)+
n=0

(12 [ML [ gt )] -
n=0

3 )
n=0
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Comparing the coefficients of the like terms of
p, we have
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Similarly
3a .
ws(2.) = (W) A = @) {p(o) ey + (1))

and with help of mathematical induction we get

tn(2,t) = (b(x) A=c(x))" {plx) +(f)"}.

t'I'LO/,
I(na+1)

and so on, in this manner, the rest of component of
the homotopy perturbation series can be obtained.
Thus the solutions in series form is given by

u(z,t) = p(a) + f(x) + [b(x)A-

()] [pla)

@+ © F2(a0)] + o)A

t’I’LOé

—c(x)]"(p(x)r( + @ t)) 4 (10)

no+ 1)

HPTM solutions of non-linear space-time
fractional reaction-diffusion equation

Now we consider the non-linear space-time frac-
tional reaction-diffusion equation of the form:

oDffu(x, t) = bAu(z, t) + f(u(z,t)) + gz, t),
t>0,zeR"0<a<l,1<pB<2, (11)
u(z,0) =p(z), ze€R"™ (12)

Definition 2. The classical solution of Cauchy
problem (11), (12) formulated analogue as defini-
tion 1.

Taking the Laplace transform on both sides of
(11) and using (12), we get

p(x) | bx)

Ly su(z,t) = — + ?Lt_,s[Au(z, )]+

b Ll )]+ Lot 0] (13)

Applying the inverse Laplace transform on both
sides of (13) we get

@Ltﬁs[/lu(x, t)]+

[0

u(w,t) = pz) + L%,
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Ll )] + g ).

Now we apply the homotopy perturbation
method

(14)

u(z,t) = Zp”un(x,t)

n=0

and the nonlinear term can be decomposed as

(15)

flu(,0) =Y p"Hy(u) (16)

n=0

for some He’s polynomicals H,, (u) [23, 24] that are
given by

H,(up, U1y .-y Up) = Taaa;{f(ipzul(x,t)”,
i=0
n=01,.... (17)

Substituting (15) and (16) in (14) we get
Zp"un(x, t) = p(x)+
n=0

oLt ML A )] ¢

«
n=0

1 S n (o3
Lo | Y P Haula,0)] + (a0, (18)
n=0
Comparing in (18) the coefficients of the like
terms of p we have

Uo(xat) zp(x) + Jtag(x7t)a

1
up(z,t) = Ls_)th—aLt_)S Aug(x, t)+

1
+§Lt~>s[H0] = J{ [bAuo(z, )] + Ji* [Ho]
and roceeding in a similar manner, we get

ug(a, t) = JA N g ),
ug(a, t) = J7 A g2 ),

tn (z,t) = JEOA Ol e rm,

and so on, in this manner, the rest of the compo-
nents of the homotopy perturbation series can be
obtained. Therefore the solution in series form is
given by

u(t, ) = p(z)+Jfg(z, )+ I3 [bUao(z, )|+ 7 [Hol+
+J DAy (2, )] + JE[Hy] + -+ +

+ I [bAu, (2, )] + JX[Hp] + - .. (19)

where H,, is defined by (17).

Main theorem

The solutions of problems (5), (6) and (11),
(12) are defined by (10) and (19) respectively.
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ITPO HABJIMXKEHI PO3B’A3K! JIIHIMHUX TA
HEJITHITHUX IICEBIOJIU®EPEHIIIAJILHUX PIBHAHb

[TonsarTs dppakTaga € OAHIEIO 3 OCHOBHUX MAPAIATM Cy9IACHOI TEOPETUIHOI Ta E€KCIIePUMEHTAIHLHOL
dizukn, pagiodizuku Ta paiosaoKariii, a JpodoBe YUCTEHHST € MATEMATHIHOIO OCHOBOIO (DPAKTAILHOT (Di-
3UKHU, T€0TEPMaJILHOI €HePTil Ta KOCMIYHOI eJIeKTPOAMHAMIKY Ta iHmmX. Mu j10c/ipKyeMo po3B’si3HIiCTh
zagadi Ko jyis miniftHUX Ta HEJIHIAHUX HEOJHOPIITHUX MceBIoandepeHIiaIbHuX PiBHAHD Tudy3il.
PiBusiaua mictures npoboBy moximHy 3a gacoBoro 3minHOIO Ty Pimana—Jliysiurs, Busnadeny KarmyTo,
Ta TCeBIoANMEPEHIAMbHII OIepaTop, AKUi i€ 38 MPOCTOPOBUMH 3MIHHUMH 1 TTOOYIOBaHUN 38 OTHO-
PiIHUM, HEBiT'€MHOTO MOPSIKY OHOPITHOCTI, HETJIAJKUM Y MOYATKY KOOPJIUHAT CUMBOJIOM, JIOCTATHBO
IJIQIKUM 338 MEYKaMU MOYaTKy KoopauHat. HeoaHOpiMHICTh PiBHAHHS 3a/€2KUTH BiJl 9aCOBOI i TPOCTO-
POBUX 3MIHHUX Ta JIOIIyCKa€ nepeTBopeHHs Jlamraca 3a 1acoBoio 3minHoio. [loyarkoBa yMOBa MiCTUTH
obMekeHy (DYHKIIO.

Mera: nokaszaru, 1o merox romoroniynoi neprypbanii HPTM (homotopy perturbation transform
method) Jierko 3acTocoByBaTu [0 JUHIHHUX Ta HEJIHIHHUX HEOAHOPIAHUX IceBIoaudepeHIiajlbHIX PiB-
Haub audysii. JloBectn po3B’sA3HOCTI Ta OTpUMAHHS (DOPMYJIH Jijis PO3B’A3KY y BUIVISL Py 3a/adi
Kormi st BKazasux JIHIRHUX Ta HEJIHIHHUX PiBHSAHB Audys3ii.

Meronu. 3anaga poss’s3yerbes merogom HPTM, skwuit noemmye nepersopenns Jlammaca (Laplace
transform) 3a wacoBoro 3minHOIO 1 Meroy romoroniunol neprypbanii (HPM — homotopy perturbation
method). ITicaa nepersopenus Jlamiaca orpuMyeMo iHTerpasibHe PIBHSHHS, PO3B’A30K SKOI'O IIyKAEMO
y BUTVISIZI PsAJTy 3& CTEIIEHSIMU BBEJIEHOTO TapaMeTpa 3 HeBimoMmumu Koedimientamu. [lics miacranoBku
BBEJIEHOT (pOPMYJIN JJIsi PO3B’sI3KY y iHTerpaJibHe PIBHSIHHSI IIPUPIBHIOEMO BUPA3U Oljisl OJHAKOBUX CTe-
[eHiB mapamMeTpa i orpumyeMo GopMy/In jjis HeBimomux koedirientis. [Ipu pos3s’sa3yBanHl HeiHIHHOTO
PIBHSIHHSI BUKOPHUCTOBYETBHCSI CIEIaJbHII TOJIHOMIAJ, AKA BXOAUTDH B KOeMIMIEHTH PO3KJIALY HeJTiHiii-
HOI PYHKITIT 1 T03BOJISIE 32CTOCYBATH METO/I TOMOTOIIIHOI TTepTypoarrii i 11 HeiHIHHOTO HEOIHOPIIHOTO
TICeBI0IMDEPEHTIIATBHOTO PiBHAHHS AUPY3il.

PesynbraTom € po3s’sa3ok 3amadi Ko gjist mocstimKyBaHOTO piBHAHHS Audy3il, Skl MOJA€TbCa Y
BUIJISIII DALY, YJIeHAMHU SIKOT'O € 3HaiijieHl (pyHKINT 3 TapaMeTPUIHOIO Psiy.

B miit mpari Bmepine moBeneHa po3B’S3HICTH Ta oTpuManHa (GopMyJia i po3B’s3Ky 3amadi Ko y
BUIJISAI DALY JJIs JIHIRHAX Ta HeTHITHIX HEOIHOPIMHUX ICeBAON(EPEHITIATPHUX PIBHIHD Audy3il.

KurouoBi cioBa: neperBopentst Jlamaca, romoromiaauit neprypbartiitauii meros, dppaxTas, apo-
6oBa moxinna 3a KamyTo, ncesnomudepeniiaabamit orepaTop.
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