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SIMULATING STOCHASTIC DIFFUSION PROCESSES AND
PROCESSES WITH “MARKET” TIME

The paper focuses on modelling, simulation techniques and numerical methods concerned stochastic
processes in subject such as financial mathematics and financial engineering. The main result of this
work is simulation of a stochastic process with new market active time using Monte Carlo techniques.

The processes with market time is a new vision of how stock price behavior can be modeled so that
the nature of the process is more real. The iterative scheme for computer modelling of this process was
proposed.

It includes the modeling of diffusion processes with a given marginal inverse gamma distribution.
Graphs of simulation of the Ornstein-Uhlenbeck random walk for different parameters, a simulation of
the diffusion process with a gamma-inverse distribution and simulation of the process with market active
time are presented.

To simulate stochastic processes, an iterative scheme was used:

Tht1 = T + a(:vk, tk)At + b(.f(:]€7 tk)\ﬂAt)ak,

where € each time a new generation with a normal random number distribution.

Neat, the tools of programming languages for generating random numbers (evenly distributed, nor-
mally distributed) are investigated. Simulation (simulation) of stochastic diffusion processes is carried
out; calculation errors and acceleration of convergence are calculated, Euler and Milstein schemes. At
the next stage, diffusion processes with a given distribution function, namely with an inverse gamma
distribution, were modelled. The final stage was the modelling of stock prices with a new "market" time,
the growth of which is a diffusion process with inverse gamma distribution. In the proposed iterative
scheme of stock prices, we use the modelling of market time gains as diffusion processes with a given

marginal gamma-inverse distribution.

The errors of calculations are evaluated using the Milstein scheme. The programmed model can be
used to predict future values of time series and for option pricing.

Keywords: simulating of stochastic processes, computer modelling, diffusion models, processes with

fractal “market” time.

Introduction

In financial mathematics and engineering, ran-
domness is the dominant criterion that determines
the inner character of markets. In this case,
stochasticity, like Brownian motion, is not just a
negligible correction, but a major approximation
to the real process. That is, we can say that
our world is not deterministic, its real nature is
stochastic. The usual differential equation is only
the first approximation to the description of real
processes. The next step is stochastic equations
and computer modeling of the stochastic processes
[1].

Computer modeling of the behavior of complex
stochastic systems and processes is a must-have
tool for any financial analyst, and sometimes the
only way to explore these systems.

The model of continuous stochastic processes
is used quite effectively when calculating financial
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formulas. For all its elegance, a model of contin-
uous stochastic processes is rather limited model
which only tries to describe a real process. In fact,
the market has a disruptive dynamic, as there are
periods of time when it is closed.

The assumption of trade continuity over very
short periods of time is also artificial.

Modeling and simulation techniques of the
stochastic diffusion processes have been a matter
of active research in recent decades. Some of them
can be found in papers of Kozachenko U.V., G.
Deodatis G. and other. In context of our research
we use ideas from [1; 2]. But in most publications
dealing with simulation of stochastic processes the
problem of computer modeling for processes with
given marginal probability density and with new
market time didn’t studied.

The aim of the work was to construct the itera-
tive scheme for modeling market time as a diffusion
processes with a given marginal inverse gamma dis-
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tribution and then simulate a stochastic process
for stock price with new market active time using
Monte Carlo techniques.

In the second section we remind what is
stochastic Ito process and how we can apply Monte
Carlo method for simulation of the Ito processes
[1; 9]. We show the idea of modeling stochas-
tic processes using the Monte Carlo method and
the iterative scheme and for demonstrating how
computer modelling works. Then we simulate
Ornstein-Uhlenbeck random walk for different pa-
rameters.

In the third section modeling and simulation of
diffusion processes with a given marginal distribu-
tion are studied. This section is based on the paper
[3], where diffusion models with linear drift and a
known and prespecified marginal distribution are
studied, and the diffusion coefficients correspond-
ing a large number of common probability distri-
butions are found explicitly. We just construct the
iterative scheme for modeling diffusion processes
with a given marginal inverse gamma distribution
and simulate this processes for different parame-
tries.

Forth section contents the main result and de-
scribes time-changed processes and its simulation.
This section is based on the papers [4-7] where
models of the generalized diffusion process with
“market” time are presented. In proposed itera-
tive scheme for stock prices we use modeling mar-
ket time increments as a diffusion processes with a
given marginal inverse gamma distribution.

The fifth section is devoted to estimates errors
and convergence acceleration.

Stochastic Ito processes and its simulation

This paper considers a stochastic process with
continuous-time and continuous-variables, because
this kind of process allows to interpret the change
in the stock prices in the market. A stochastic
process with continuous time describes the behav-
ior of a variable whose value changes at any time.
Continuity of variables means that they can take
any value within a certain range.

Stochastic equations are a very natural time-
continuous limit of the discrete random processes.
When solving a continuous equation we will con-
stantly return to its discrete analog, both for ob-
taining the general analytical results and for nu-
merical modeling.

The Ito equation and its natural generaliza-
tion to the systems of stochastic processes are the
mathematical instruments which allow introducing
randomness in the smooth dynamics of ordinary
differential equations. The stochastic differential
equation can be defined as a stochastic process

[1; 9]:

dXt = a(Xt,t) dt+b(Xt,t) %% (1)

where 6W = ev/dt is infinitely small Wiener
“noise” and € ~ N (0, 1).

Function a(z,t) is called the drift coefficient,
and b(x,t) is called the wvolatility coefficient; its
squared b?(z,t) is called diffusion.

The general Ito processes are just the “defor-
mation” of the simple Wiener random walk by the
functions a(z,t) and b(z,t). The drift a(x,t) and
volatility b(x,t) have simple meaning. If  is equal
to xg in the moment of time tg , then the mean val-
ues of first and second powers of its change after
the infinitely close interval At — 0 will be equal
these coefficients [1].

The processes with properties fully determined
only by infinitely small local changes of first and
second orders are called “diffusive”.

To understand the nature of the diffusive pro-
cess, random variable modeling is used. The total
time interval is divided into a large number of in-
termediate intervals on which random trajectories
are generated. This allows to estimate the future
probability distribution of the variable.

The Ito equation 1 allows modeling the time dy-
namics of an arbitrary stochastic process by means
of the iterative scheme[l]:

Tpy1 = Tk + a (g, tg) At + b(xg, tp)/ Dter (2)

For modeling stochastic Ito processes, the Monte
Carlo method is preferred, because time depends
linearly on the number of stochastic variables, not
exponentially, as for other methods (for example,
the method of constructing binomial trees)[2], [1].
In addition, the Monte Carlo method allows to cal-
culate the standard deviation, as well as to take
into account complex stochastic processes.

The idea of modeling stochastic processes using
the Monte Carlo method consists in choosing ran-
dom values of process coeflicients for the equation
2.

It is known that in financial mathematics Brow-
nian motion with trend and Geometrical Brownian
motion are the most widely used. But for demon-
strating how computer modelling works we choose
Ornstein-Uhlenbeck random walk.

Example 1. The Ornstein-Uhlenbeck process
describes the random walk when x is attracted to
the level determined by the constant «(see [1; 9]):
de = -0 (x — a)dt + cdW.

The volatility o is assumed to be constant.

The parameter S > 0 determines the value of
the “attractive force” to the equilibrium value a.
If £ > «, the drift becomes sufficiently negative
and draws the process down. As z falls below «,
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the drift becomes positive and raises z(¢) up on av-
erage. Thus, an equilibrium is maintained where
all values do not deviate from some «, which is a
useful characteristic for various financial models.

Here below is an example of simulation of the
Ornstein-Uhlenbeck random walk for different pa-
rameters. In both cases the value of « is equal to
1. In the left figure 8 = 0.1,0 = 0.1. In the right
figure 5 =1,0 = 0.5.

Figure 1. Simulation of the Ornstein-Uhlenbeck
random walk

Modeling of diffusion processes with a
given marginal distribution

In the paper [3] flexible stationary diffusion-
type models are developed that can fit both the
marginal distribution and the correlation structure
found in many time series from e.g. finance and
turbulence. Diffusion models with linear drift and
a known and prespecified marginal distribution are
studied, and the diffusion coefficients correspond-
ing a large number of common probability distri-
butions are found explicitly.

Consider the stochastic differential equation of
diffusion process with an exponential autocorrela-
tion function and a specified marginal distribution
suggested in Bibby’s article[3]

dx = —0(z — p)dt + /v(x)dW (3)

where 6 - coefficient of the autocorrelation func-

tion, u — drift coefficient and v — non-negative
function calculated by the following formula:

_ 20 [ (n—y) f(y)dy
f(x)

_ 20pF () =260 [["yf (y) dy
f(x) ’
where F' - is the distribution function associated
with the density f.

The idea is to construct a stochastic gamma-
inverse diffusion process, because as we will see
below, the design of the market time process is
based on the use of diffusion processes with a pre-
specified marginal gamma-inverse density.

The density function for the diffusion process
with a gamma-inverse distribution has the form:

v ()

g 1 -6/
— x—Ot— e— xr
Uy
with p equals to %
coefficient is set as:

and the squared diffusion

v(z) = x?,

where a = %; B=3.
In Bibby’s article[3] these coefficients were al-
ready found:

Then the process itself will be determined by the
equation:

v [ 46

From which we can easily build an iterative
scheme:

v

1'k+1:13k—9<13—62_2>ﬂt

[ 40
+ msztEk (5)

Example 2. The graph below shows a simula-
tion of the diffusion process with a gamma-inverse
distribution, the coefficients of which were calcu-
lated empirically, as random values of the student
type, as the congruence of the distribution of log
returns of real financial data and the theoretical
Student distribution was confirmed [5]:



28 ISSN 2617-7080. Morussincekuit MaremaTuynuii xypaas. 2020. Tom 3

Figure 2. Simulation of diffusion processes with a
gamma-inverse distribution:
0 =0.01433; v= 0.111;6 =3

Simulation of the generalized diffusion
process with "market” time

The price of underlying traded assets S(t) is
the strong solution of the following stochastic dif-
ferential equation (SDE) [4]:

2
dx = pxdt + (9 + 02) xdl + oxdWrp.  (6)

The meaning of the coefficients before dt, dT', and
dWr, you can find in [8].

This model differs from the previous one in that
the Brownian motion does not depend on the usual
calendar time, but on some random process T,
otherwise, from market time.

Market time is a positive non-descending
stochastic process with stationary increase that are
subordinated to the gamma-inverse distribution.
The idea of using "market" time is intuitively cor-
rect, because the change in stock prices occurs ran-
domly, rather than at certain points in time.

The iterative scheme for this process will be the
following:

52
Tpp1 = Tp+ pap At+(0+ E)Q%TkJFU\/T»kEk (7

where p, o and 6 are constants, € — white noise
with normal standard distribution, and 7 is a sta-
tionary process of active time, with inverse gamma
distribution, which was modeled earlier (see [4], [5],

(61, [71)-

Figure 3. Simulation of diffusion processes with
market time:
0 = 0.01433;v = 0.111;6 = 3; u = 0.0025; 0 = 0.16

Estimates errors and convergence
acceleration

The specific trajectory of the Wiener process
fully determines any trajectory of a diffusion pro-
cess if its changes are contained in the stochastic
term of the differential equation [1]. For the pro-
cesses with the exact solutions expressed explicitly
using Wiener variable © = f (¢, W;), it is possible
to calculate the mean absolute deviation between
divergence of the exact solution and numerical one:

E= <|z(tk) - xezact(tk)w (8>

For this purpose it is necessary to model the dis-
crete Wiener trajectory applying the sequence of
random Gauss quantities 1, ...,&, and build the
iteration scheme using them. For the equation
dx = a(x)dt+b(x) dW the basic iteration scheme

we have used in the book is called “the Euler
scheme”:
Thp1 = Tp + ap D+ bpeg/At (9)

where e, ~ N (0,1), a ap = a (zx) , b = b ().

The shorter the time interval At is, the closer
the sequence of values of the random process x; =
= x (t)) is to the continuous trajectory Zezqct ()
in the moments of time t;. While for the ordinary
differential equations reducing the step of the it-
eration scheme to increase the solution precision
is quite easy in most cases, the situation is much
more difficult in the stochastic case.

In order to get the mean value of the random
process with the relative precision 1072 it is nec-
essary to perform about 107% experiments. The
time required is 10~3 times longer than in the de-
terministic case.

The situation becomes critical if in each exper-
iment of this kind to reduce At, cause the number
of iterations increases significantly. One method of
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successive approximations is obtained by the fol-
lowing iteration scheme:

Tl =Tk +ap Dt +bregy At

At
+ bj,br(ex — 1)7
+ b/kakEk(At)g/z

V3 1 (Ab)?2
li _ / v =
+ (ajbr — axby)( 5 €k + 2%) NG
At)?

+ ajay ( 2) (10)

where  ~ N(0,1) is the random quantity statisti-
cally independent from e.

The first line of this solution is called the Mil-
stein scheme, the general solution is the modified
Milstein scheme which is used to accelerate the
convergence of a numerical stochastic differential
equation. The results of calculations for 10 thou-
sand experiments are shown in table below:

Scheme Fg Eu Env
At=10"21]10"21]1.04-107* | 1.4-107°
At=10"%1]10"*]1.05-107° | 1.45-107°
At=10"*1]10"° | 1.06-1076 | 1.45-10""

Table 1. Results of experiments

Conclusion

Simulation of a stochastic process with active
time is a new vision of how stock price behavior
can be modeled so that the nature of the process is
more real. In the paper simulation of a stochastic
process with new market active time using Monte
Carlo techniques was considered.

The iterative scheme for this process was pro-
posed. It includes the modeling of diffusion pro-
cesses with a given marginal inverse gamma dis-
tribution. The programmed model can be used to
predict future time series values. The programmed
model can be used to predict future time series val-
ues and to option pricing.
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CUMVJISIIS CTOXACTUYHNX AUOYIIMHUX
ITPOLECIB I ITPOLECIB 3 «PUHKOBUM» YACOM

Y dinancosiit MaTeMaTHIll BUIAIKOBICTH € MAHIBHUM KPUTEPiEM, SKUil BU3HAYAE BHYTPINIHIA Xa-
paKkTep PUHKIB. ¥ IbOMY BHIQJIKY CTOXAaCTHYHICTH, IK i OpPOYHIBCHKUII PyX, € HE TPOCTO HE3HATHOIO
KOPEKIIIEI, a TOJOBHUM HADJIMKEHHSIM [0 PeasibHOro mporecy. To0TO, MM MOXKEMO CKA3aTH, [0 HAII
CBIT HE € JeTepMiHOBAHUM, HOTO peasibHa MPUPOJA CTOXACTHYIHA. KOMII'ToTepHE MOJIETIOBAHHS TOBe-
JIHKW CKJIAJHUX CTOXACTUYHUX CHCTEM Ta BUIAJKOBUX IPOIECIB € 00OB’S3KOBHUM IHCTPYMEHTOM JIJIs
OyIb-1KOTO (biHAHCOBOTO AHAJNITHKA, a iHOJI 1 € TUHUM CITOCOOOM JIOC/Ti/I?KEHHS TIUX CHUCTEM.

MeToan MOIETIOBAHHS IPOIECIB CTOXACTUIHOI Andy3il € MpeMeTOM aKTUBHUX JOC/IIXKEHb B OCTAH-
i gecarmwaiTrs. Heski 3 nux moxkHa 3Haiitu B nparnsgx Y. B. Koszagenko, I'. leomarica Ta immmx. B
KOHTEKCT1 HAIIOro J0CJijzKeHHss Mu BukopucroByemo inel B. JI. Crenanosa ta /Ix. Xasuta. Ajse B
GinbIrocTi my6UTiKaIlil, TPUCBSIYICHUX MOJIETIOBAHHIO CTOXACTHIHUX ITPOIIECIB, MPOoOIeMa KOMIT I0TEPHOTO
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MOJIEJTIOBAHHS TIPOIIECIB 13 33JaHOI0 TPAHUYHOIO MIIIBHICTIO IMOBIPHOCT] Ta 3 HOBHM PHHKOBHM YaCOM
He BUBYAJIACH.

Mertoro poboTu OyJsi0 OOY/IyBaTH iTepaliiftHy cxeMy i 3/IiHCHUTH KOMIT IOTepHE MOJICTIOBAHHS JTESTKUX
nporiecie audy3il 3 Hamepe | 3aJaH0K0 I'PAHUYHOI IIUIBHICTIO Ta IPOIECY PYXy PU3MKOBAHUX AKTHUBIB,
SIK IIPOIIECY y3arajbHeHol qudy3il 3 «pUHKOBUM» TacoM.

s cuMynsanii CTOXaCTUIHUX TPOIECiB OYJI0 BUKOPUCTAHO iTepaIliiHy CXeMy:

Tha1 = Tk + a(zp, b)) Ot + bk, tr) v/ (Dt)er,

JIe £} KOXKHOTI'O pa3y HOBe 3TeHEePOBAaHE 3 HOPMAJIBHUM DPO3IO/IJIOM BHUIIAIKOBE HUUCIIO.

Haui mocitizkeHo 3aco00M MOB IIPOrpDaMyBaHHsI JJisi TeHepYBaHHsI BUNAIKOBUX duces (piBHOMIpHO-
POBIOIEHUX, HOPMAJILHO PO3IOIICHNX ). 3MIHCHEHO MOJAETIOBAHHS (CUMYJISIO) CTOXACTUYHUX JIU-
dy3iiHIX TpoIEeciB; pO3paxoBaHO MOXMOKK ODYHC/IEHBb Ta MPUCKOpPeHHs 30ikHOCTi, cxemu Eitepa Ta
Miscreiina. Sk mpukial MU MOJIETIOEMO BUITIKOBHIT Tiporiec OpHITeiina- YiaeHOeka Jjis pi3HuX mapa-
MEeTPiB.

Ha nactynroMmy ertami 6y710 3aIIporioHOBaHO iTepalliifHy cxeMy Ta 3MOJeIbOBaHO Judy3iitHi mporecu
i3 3a/1aHO0 (DYHKITEIO MIIJILHOCTI I'PAHUYHOTO PO3IOJLLY, a caMe 3 0bepHEHUM raMma-po3mnoaiiom. [s
iTepariitna cxema 0asyeTbcs Ha cTaTTi BibOi. 3aKTIOYHHM €TaoM CTAJ0 MOJETIOBAHHS I[H aKIiil i3
HOBUM <«PHUHKOBHM» 9acoOM. ¥ 3aIIPOIIOHOBAHIil iTepariiiiiil cxemi miH Ha akilii MU BUKOPUCTOBYEMO MO-
JIeJTIOBAHHS PUHKOBUX MPUPOCTIB Yacy sK Audy3iitHi mporecu 3 3a[aHUM IPAHIIHIM raMMa-00epHEHNM
PO3IIOJILIOM.

Kuro4oBi cioBa: cuMysisniss CTOXaCTHIHUX MPOTIECiB, KOMIT IOT€pHE MOIEIIOBAHHA, MU y3iiiai Mo-
Jeni, mporiec i3 ppaKkTaIbHUM «PUHKOBUM» TaCOM.

Mamepiaa naditiwos 10.09.2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)



