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DIAMETER SEARCH ALGORITHMS FOR DIRECTED

CAYLEY GRAPHS

It is considered a well known diameter search problem for �nite groups. It can be formulated as
follows: �nd the maximum possible diameter of the group over its system of generators. The diameter
of a group over a speci�c system of generators is the diameter of the corresponding Cayley graph. In
the paper a closely related problem is considered. For a speci�c system of generators �nd the diameter
of corresponding Cayley graph. It is shown that the last problem is polynomially reduced to the problem
of searching the minimal decomposition of elements over a system of generators.

It is proposed �ve algorithms to solve the diameter search problem: simple down search algorithm,
fast down search algorithm, middle down search algorithms, homogeneous down search algorithm and
homogeneous middle down search algorithm.

The �rst two algorithms are universal. They can be applied to any �nite group and its systems of
generators. Moreover, the fast down search algorithm is an optimized version of the simple down search
algorithm.

A property of strict growing fora system of generators is introduced. In this case the search process can
be optimized by focusing only on those group elements, for which minimum decompositions potentially
have the maximum possible length. Based on this property middle down search algorithm is introduced.

The main part of the paper is homogeneous theory. It is considered a series of groups with its
systems of generators and some additional properties of them. It is de�ned a homogeneous property of
these series. A binary equivalence relation relies on it. The main purpose of de�ning such a relation is
preserving decompositions of elements from the same equivalence class. It is enough to �nd the minimum
decomposition of only one representative of the equivalence class.

It is introduced homogeneous down search and homogeneous middle down search algorithms. These
algorithms can be applied to groups that belong to homogeneous series of groups with systems of gener-
ators.

For every algorithm its correctness is shown. The complexity estimations for algorithms is discussed.

Keywords: Cayley graph, diameter of group, system of generators.

Introduction

The diameter search problem in group theory
can be formulated as follows: for a �nite group G
�nd the maximum of its diameters D(G) over all
systems of generators of G. A few general results
in this area are known. The most general conjec-
ture was proposed by L. Babai and A. Seress in
[1, Conjecture 1.7]:
Conjecture 1. If G is a non-abelian �nite simple
group of order N , then D(G) < (log N)C for the
absolute constant C.

The �rst family of �nite simple groups, for
which this conjecture was proved by H. Helfgott
in [2], is PSL2(Z/pZ), where p is a prime. For
groups of Lie type an upper bound of the diameter
was found by E. Breuillard, B. Green, and T. Tao
in [3] and by L. Pyber and E. Szab�o in [4]. For per-
mutation groups upper bounds of diameters were
presented by H. Helfgott and A. Seress in [5].

We can also consider in this domain another

widely known problem, the minimum-length gen-
erators sequence search problem. Speci�cally, for a
given �nite groupG, its system of generators S and
a target element g ∈ G �nd a shortest generator se-
quence realizing g. In particular, for permutation
groups such a problem is NP-hard [6].

As a partial case of the diameter search problem
one can deal with the diameter search for a �nite
group over a �xed system of generators. For exam-
ple the diameter of Sym(n) over S = {(1, k)|k ∈
∈ 2, . . . , n} was found in [7].

In this paper we consider the diameter search
problem for directed Cayley graphs. We introduce
di�erent algorithms and discuss their properties.

The paper is organized as follows:

1. Section Introduction contains basic notations
and decomposition problem description. The rela-
tion between decomposition problem and diameter
search problem is demonstrated.

2. Section Simple down search algorithm intro-
duces universal diameter search algorithm and
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proves its correctness.
3. Section Fast down search algorithm introduces
in�nite decomposition trees and optimized version
of simple down search algorithm. It is proved cor-
rectness of the algorithm.
4. Section Middle down search algorithm intro-
duces strict growing property of a system of gener-
ators and diameter search algorithm, based on it.
It is proved correctness of this algorithm.
5. Section Homogeneous theory introduces
groups-generators series, properties of them and
homogeneous equivalence between elements of
groups.
6. Section Homogeneous down search algorithm
introduces algorithm, which requires homogeneous
property of groups-generators series. It is proved
its correctness.
7. Section Homogeneous middle down search algo-
rithm introduces diameter search algorithm, which
requires both homogeneous property of groups-
generators series and strict growing of system of
generators. It is proved correctness of the algo-
rithm.

Preliminaries

Unless otherwise speci�ed in the paper we de-
note by G a �nite group and by S a system of
generators of G.

Basic notation. The following notations will
be used:
1. kmodm � the remainder of division of integer
k by integer m 6= 0.
2. n1, n2 � the set of natural numbers
{n1, . . . , n2}, where n1 ≤ n2.
3. f ◦ g := g(f) � the right composition of map-
pings f, g.

We de�ne an index tuple I as a tuple of pair-
wise di�erent natural numbers, i.e. for some n ≥ 0
we have

I = (i1, i2, . . . , in), ij 6= ik, j 6= k.

In other words, every index tuple is a linearly or-
dered �nite set of natural numbers. We call n the
cardinality of the index tuple I. Sometimes we
abuse terminology and refer to index tuples as to
sets with no ordering.

Let I, J be disjoint index tuples (i.e. they have
no common elements) with cardinalities n1, n2 re-
spectively. Then we de�ne the concatataion of
them as

I t J = (i1, . . . , in1
, j1, . . . , jn2

).

Let I, J be index tuple with cardinalities n1, n2
respectively. Then their di�erence is de�ned as

I\J � the tuple of numbers from the set I\J,

ordered as in I.
Note that I\J can be empty.

Diameter search problem.

De�nition 1. The (right) Cayley graph of G
over S is a colored directed graph Cay(G,S) con-
structed as follows:
1. the set of vertices is G;
2. the set of colors is S;
3. for any g ∈ G and s ∈ S, the vertices g and g · s
are connected by a directed edge of color s.

Since S generates G the Cayley graph of G over
S is a strongly connected graph.

Remind that the distance between two vertices
in a directed strongly connected graph is the length
of the shortest oriented path which connects them.
The diameter of the graph is the maximum of dis-
tances between its vertices.
De�nition 2. The diameter of the group G with
respect to the system of generators S is the diam-
eter of the corresponding Cayley graph Cay(G,S)
of the group G over S:

DS(G) = D(Cay(G,S)).

De�nition 3. The diameter of the group G is de-
�ned as the maximum of diameters of G over its
systems of generators:

D(G) = max
〈S〉=G

DS(G).

Decomposition problem. Every element g of
G can be decomposed into a product

g =

l∏
k=1

sik

of generators from S for some natural l. Corre-
sponding tuple of generators (si1 , . . . , sik) will be
called a decomposition of the element g over S.
The length |g|S of the element g over S is the
length of the shortest decomposition of g over S.

Let us formulate the following computational
problem.

Decomposition problem: for a given group G
and its system of generators S �nd the maximum
of lengths of its elements over S.

Let g1, g2 be vertices from Cay(G,S). Denote
by d(g1, g2) the distance between g1 and g2 over S.
Theorem 1. The diameter search problem is
polynomial-time reducible to the decomposition
problem.
Proof. Let l be the diameter of the group G with
respect to the system of generators S. It means
that there exist vertices g1, g2 from Cay(G,S)
such that d(g1, g2) = l. It immediately implies
d(g1, g2) = d(e, h), where h = g2 · g−11 . Hence, the
labels of the shortest path between e and g2 · g1−1
form a decomposition of h over S. The statement
immediately follows.
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An element a ∈ G will be called diameter ele-
ment of group G over S if its length over S equals
to diameter of group G over S:

|a|S = DS(G).

Simple down search algorithm

Consider an algorithm of �nding diameters that
are based on breadth-�rst search algorithm [8] for
graphs.

Algorithm 1: Simple down search algo-
rithm
Input: G � a group, S � its system of

generators
Result: Diameter DS(G)
Initialization: found = {e},
all = {g|g ∈ G}, current_level = {e},
level = 0;
while found 6= all do

current_level = current_level · S;
found = found

⋃
current_level;

level = level + 1;

end

Output: level

Theorem 2. Simple down search algorithm is cor-
rect.
Proof. We need to show that:
1. the algorithm has no �dead� loops;
2. the output of the algorithm is the diameter
DS(G).
These two parts will be proved separately.

Part 1. Let a be arbitrary element of the group
G. Since S generates G there exists a decomposi-
tion of a over S:

a =

l∏
k=1

sik .

Therefore, the element a will belong to found at
the moment when level = l.

Since the group G is �nite there exists n such
that at the moment level = n we obtain found =
= all.

Part 2. Let us denote DS(G) by d. Suppose
that d 6= level, where level is the output of simple
down search algorithm for group G over S. Con-
sider two cases.
1. Assume that d < level. Then, for every element
a of the groupG there exists its decomposition over
S with length l ≤ d. The set found is rede�ned in
the algorithm on each loop. Hence, at the moment
level = d we have:

all = found = {e}
⋃

(

d⋃
l=1

S . . . S︸ ︷︷ ︸
l times

),

which means that level ≤ d. A contradiction.

2. Assume that d > level. Then there exists an
element a of the group G with length d over S. By
the de�nition of length over system of generators
there are no sets of indices {i1, i2, · · · , il}, l < d
such that:

a =

l∏
k=1

sik .

Therefore, the set found does not contain the el-
ement a when the algorithm stops. This leads to
a contradiction with the requirement that found
equals to all.

The proof is complete.
Proposition 3. Let G be a �nite group generated
by S, |S| = n and DS(G) = m. Then the total
number of multiplications in simple down search

algorithms is bounded from above by n·(nm−1)
n−1 .

Proof. At the moment level = k+1 the algorithm
needs to multiply every element of the previous
level by every generator. Then we obtain the fol-
lowing number of multiplications: |current_level|·
|S| = |S|k · |S| = nk+1. As the result, the total
number of multiplications will be

m∑
k=1

nk+1 =
n · (nm − 1)

n− 1
.

The proof is complete.

Fast down search algorithm

We need to de�ne additional structures in order
to describe another algorithms, in particular fast
down search algorithm. After that we will prove
a few statements to connect simple down search
algorithm and fast down search algorithm.

In�nite decomposition tree. Let G be a
�nite group, S = {s1, s2, · · · , sm} be its system
of generators. Consider in�nite rooted m-ary tree
T (V,E). We introduce enumeration of vertices on
each level of this tree. The vertices of the lth level
will be enumerated by numbers from 1 toml, l ≥ 0.
We obtain that

1. the root is the �rst vertex of level 0.

2. the kth child of the tth vertex of level l will have
index ((t− 1) ·m+ k) on level (l + 1).

We also label vertices and edges of the tree
T (V,E) starting from level 0 as follows:

1. the root will be labeled by e.

2. the edge, which connects the kth vertex of level
l with ([k/m] + 1)th vertex of level (l− 1), will be
labeled by kmodm, k ∈ 1, . . . ,ml.

3. the kth vertex of level l will be labeled by the
result of product: b·skmodm, where b is the label of
([k/m] + 1)th vertex of level (l− 1), k ∈ 1, . . . ,ml.
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We call such a tree the in�nite decomposition tree
of the group G over the system of generators S.
A path in this tree will be identi�ed with the se-
quence of labels on edges along this path.

Let T be the in�nite decomposition tree of the
group G over S.
Lemma 4. An element a from G has decomposi-

tion
l∏

k=1

sik if and only if the path i1, i2, · · · il con-

nects the root vertex with the vertex labeled by a in
T .
Proof. Induction on the decomposition length l.

The basis: case l = 1.
Necessity. Let a = sik for k ∈ 1, . . . ,m. The

equality e · sik = a implies that the kth vertex on
level 1 will have the label a.

Su�ciency. Let the kth vertex of the �rst level
be labeled by a. Then, from the de�nition of the
in�nite decomposition tree we have a = e · sik .
Then a = sk. Hence, a has a decomposition of
length 1, i.e. sik .

Induction step: case l+1 under assumption that
for l the statement holds.

Necessity. Let a =
l+1∏
k=1

sik . Under inductive as-

sumption for the element b =
l∏

k=1

sik we have: the

path i1, i2, . . . , il connects the root with the vertex
w labeled by b. The equality a = b · sil+1

implies
that the (il+1)th child v of the vertex w is labeled
by a. Hence, i1, i2, . . . , il+1 is a path from the root
to w.

Su�ciency. Let i1, i2, . . . , il+1 be a path, which
connects the root with the vertex v labeled by a.
The de�nition of the in�nite decomposition tree
implies the equality

a = b · sil+1
,

where b is a label of the vertex w, the parent of the
vertex v.

From the inductive assumption we have that

the product
l∏

k=1

sik equals to the element b. There-

fore, the product

(

l∏
k=1

sik) · sil+1
=

l+1∏
k=1

sik

equals to the element a.
Proposition 5. Let G be a group, S be its system
of generators, l be a natural number.
1. The diameter of the group G over the system of
generators S equals to l if and only if l is the small-
est level number in T such that every element of G
appears at least once as a label of a vertex starting
from level 0 up to level l.

2. In simple down search algorithm an element a ∈
∈ G appears at the moment level = l if and only if
there exists a path i1, i2, . . . , il which connects the
root with the vertex v labeled by a in T .
Proof. 1. The diameter of the group G over S
equals to l if and only if for every element a of G
there exists a decomposition over S with length ≤
≤ l. The last statement holds if and only if there
exists a path with length ≤ l which connects the
root with a vertex labeled by a. Therefore, for ev-
ery element a of G there exists at least one vertex
labeled by a on levels from 0 to l.

2. The element a appears in the simple down
search algorithm at the moment level = l if
and only if there exists a sequence of generators

si1 , si2 , . . . , sil ∈ S such that a =
l∏

k=1

sik . From

Lemma 4 it follows that the last statement holds if
and only if the path i1, i2, . . . , il connects the root
with vertex labeled by a.

The proof is complete.
Let v be a vertex of the tree T on level t. Recall

that the sub-tree T |v of T rooted at the vertex v is
the tree constructed from T as follows:
1. the root of new tree T |v is v.
2. the lth level of tree T |v consists of vertices from
(t+ l)th level of T which are directly connected to
(l − 1)th level of T |v, l ≥ 1. Labels of edges and
vertices are preserved.
Denote by gv the label of a vertex v in T .
Lemma 6. Let v, w be vertices of T such that the
labels of v and w are equal. Then the rooted trees
Tv and Tw are isomorphic as labelled graphs.
Proof. Note, that T |v and T |w are isomorphic as
rooted m-ary trees. The natural isomorphism τ
preserving enumeration of vertices on levels is de-
�ned as follows:
1. the kth vertex of the lth level of T |v is mapped

to the kth vertex of the lth level of T |w, k ∈ 1, Cl

l ≥ 0;
2. an edge, which connects two vertices of the tree
T |v, is mapped to the edge, which connects images
of corresponding vertices.
It is enough to show that isomorphism τ preserves
labels of vertices.

Let a and b be labels of jth vertices on level l
of corresponding trees T |v and Tw. Suppose that
a 6= b. Then

gv ·
l∏

k=1

sik 6= gw ·
l∏

k=1

sik .

Hence, gv 6= gw. This leads to a contradiction with
the equality of labels of v and w.

The proof is complete.
Denote by PathT (v, w) the shortest path from

vertex v to vertex w in T .
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Lemma 7. Let an element a ∈ G decomposes as

a =
l∏

k=1

sik in S. If there exists t ∈ 1, l such that

the element
t∏

k=1

sik appears as a label of a vertex

of T on level less then t then |a|S < l.

Proof. Denote by b the product
t∏

k=1

sik . Then

the vertex v ∈ V , which is de�ned by the path
i1, i2, . . . , it starting from the root, will have la-
bel b. Note, that the element a decomposes as a

product
l∏

k=1

sik if and only if the path i1, i2, · · · il
connects the root of Tv with the vertex labeled by
gv · a.

The assumption of the lemma implies that
there exists a vertex w ∈ V such that w is up-
per than v in T and w is also labeled by b. Since
labelled trees T |v and T |w are isomorphic the ver-
tices, which are de�ned by the path it+1, . . . , il
from the root in trees T |v and Tw, have the same
label a. From Lemma 4 it follows that

a =

l∏
k=1

sik =
∏

k∈PathT (e,v)

sk ·
l∏

k=t+1

sik =

∏
k∈PathT (e,w)

sk ·
l∏

k=t+1

sik .

Since w is upper than v, the length of the path
PathT (e, w) is less than t. This leads to the in-
equality |a|S < l.

The proof is complete.
Fast down search algorithm. In order to

optimise the simple down search algorithm we use
the results of the previous section. The main goal
is to reduce the number of multiplications.

Algorithm 2: Fast down search algo-
rithm
Input: G � a group, S � its system of

generators
Result: Diameter DS(G)
Initialization: found = {e},
all = {g|g ∈ G}, current_level = {e},
level = 0;
while found 6= all do

current_level =
= (current_level · S)\found;

found = found
⋃
current_level;

level = level + 1;

end

Output: level

Theorem 8. Fast down search algorithm is cor-
rect.
Proof. We need to show that:

1. the algorithm has no dead loops;
2. the output of the algorithm is the diameter
DS(G).
These two parts will be proved separately.

Part 1. There are no dead loops if and only if
there exists a natural number n such that the algo-
rithm will �nd all elements of group G (set found)
at the moment level = n.

Suppose that there exists an element a ∈ G
which never appears in the set found. Consider a

decomposition
l∏

k=1

sik of a over S. Since a is not

contained in found, there exists t ∈ 1, l such that

the element b =
t∏

k=1

sik appeared on an earlier it-

eration of the algorithm. This means that there
exists a shorter decomposition of b over S. From
Lemma 4 it follows that the element b is a label of
a vertex on the level which is upper then level t.
Lemma 7 implies the inequality |a|S < k. Hence,
for every decomposition of a a shorter decompo-
sition can be found. This immediately leads to a
contradiction for the set of all lengths of decompo-
sitions of a over S is bounded from below.

Part 2. Let d1 be the output of the simple
down search algorithm with input G and S and let
d2 be the output of the fast down search algorithm.
Note that directly from these de�nitions we have
the inequality

d1 ≤ d2.

Suppose, that d1 < d2. Then there exists an ele-
ment of the group G such that it �rstly appeared
strongly after the d1th step of the fast down search
algorithm. Otherwise, �rst down search algorithm
stops at the moment d1.

Let the element a ∈ G be such that:
1. a �rstly appeared at the moment level = d2 in
the fast down search algorithm;
2. a �rstly appeared at the moment level = d2− r
in the simple down search algorithm.
The second condition leads to the equality |a|S =
= d2− r. Proposition 5 implies that there exists a
path i1, i2, . . . , id2−r, which connects the root with
the vertex labeled by a. Based on the fast diam-
eter search algorithm, there exists a natural num-

ber t, t ≤ d2− r, such that the element b =
t∏

k=1

sik

appears earlier then level = (d2 − r). Lemma 7
implies that |a|S < d2 − r. A contradiction.

The proof is complete.
The main optimization of the fast down search

algorithm compared to the simple down search al-
gorithm is to skip previously founded elements of
a group. The number of repetitions of elements
depends on a group and its system of generators.
Therefore, in general the number of multiplication,
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which are required for the fast down search algo-
rithm, can be estimated only as in Proposition 3

by n·(nm−1)
n−1 . However, in some cases this number

can be reduced signi�cantly.

Middle down search algorithm

In this section we present an algorithm that re-
quires additional properties of generators.

Strictly growing system of generators.

An element a ∈ G will be called properly gener-
ated over S if element for arbitrary A ⊂ S,A 6= S
we have a 6∈ 〈A〉.

This de�nition immediately leads to the follow-
ing statements.
Lemma 9. Every decomposition of a properly gen-
erated element contains every generator of S.

Proof. Since every element belongs to the sub-
group generated by the elements that appeared in
its decomposition the statement follows.
Lemma 10. The minimum possible length of a
properly generated element over S is |S|.
Proof. Immediately follows from Lemma 9.

A system of generators S of a group G will be
called strictly growing if every diameter element a
from G is properly generated.
Lemma 11. Let G be a �nite group, S be its
strictly growing system of generators. Then the
diameter of the group G over S is greater or equal
to |S|.
Proof. By Lemma 10 every diameter element has
length over S greater or equal to |S|. This means
that the diameter of G over S is not less than |S|.

The proof is complete.

Middle down search algorithm. Let G be
a �nite group, S be its strictly growing system of
generators.

We introduce the following notions:

1. Gf � the set of all properly generated elements
of the group G;

2. Df (S,m) � the set of all decompositions over
S with length m such that every generator of S
appears at least once in every decomposition, m ≥
≥ |S|;
3. P � the function on the set of decompositions,
which converts a decomposition to the correspond-
ing element.

Let a be an element of G with a decomposition in
Df (S,m). Note, that in general it does not imply
that a is properly generated.

Algorithm 3: Middle down search algo-
rithm
Input: G � a group, S � its strictly

growing system of generators
Result: Diameter DS(G)
Initialization: found = ∅, all = Gf ,
level = |S| − 1;
while found 6= all do

level = level + 1;
for decomp ∈ Df (S, level) do

product = P (decomp);
if product ∈ Gf then

found = found
⋃
{product};

end

end

end

Output: level

Theorem 12. Middle down search algorithm is
correct.
Proof. Since the system of generators S is strictly
growing every diameter element is properly gener-
ated. Then the set of all diameter elements is a
subset of Gf . This means that the diameter can
be found as the lengths over S of elements from
Gf are found. More precisely, the diameter is the
maximum of these lengths:

DS(G) = max
el∈Gf

|el|S .

Hence, the main loop of the algorithm terminates
after �nite number of steps, i.e. afterDS(G)−|S|+
+ 1 steps.

Lemma 9 implies that for every properly gener-
ated element a minimum decomposition belongs to
Df (S, level) for some natural number level. From
Lemma 10 it follows that level is not less than
|S|. This explains why the main loop starts from
level = |S|.

The proof is complete.

Proposition 13. Let G be a �nite group gener-
ated by a strictly growing system of generators S,
|S| = n and DS(G) = m for some n,m ∈ N. Then
the number of multiplications required by the mid-
dle down search algorithm is bounded from above
by

m∑
t=n

(t− 1) ·
n−1∑
k=0

(−1)k ·
(
n

k

)
· (n− k)t.

Proof. Since the system of generators S is strictly
growing the inequality m ≥ n holds. Hence, we
need to obtain a product of every sequence of gen-
erators of lengths from n to m. Moreover, every
such sequence must contain every generator from S
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at least once. The total number of decompositions
on the tth step equals

n−1∑
k=0

(−1)k ·
(
n

k

)
· (n− k)t.

Therefore, on the tth iteration of the algorithm the
number of multiplications is not greater than

(t− 1) ·
n−1∑
k=0

(−1)k ·
(
n

k

)
· (n− k)t.

Hence, the total number of all multiplications from
the nth to the mth step can be estimated from
above as

m∑
t=n

(t− 1) ·
n−1∑
k=0

(−1)k ·
(
n

k

)
· (n− k)t.

The proof is complete.

Homogeneous theory

In this section we consider series of groups with
its systems of generators. We put additional con-
ditions on them and obtain some useful properties.
Then it gives us a possibility to introduce new al-
gorithms.

Inductive limits of groups. Recall the no-
tion of inductive limit of groups. Let (I,<) be a
directed set, {G(i)|i ∈ I} be a family of indexed
groups. Assume that there exist homomorphisms
hi,j : G(i)→ G(j), i, j ∈ I, i < j, such that
1. hi,i = id over G(i) for every i ∈ I;
2. hi,k = hi,j ◦ hj,k for every i, j, k ∈ I, i < j < k.

For indices i, j ∈ I and elements x ∈ G(i), y ∈
∈ G(j) we write x ∼ y if there exists k ∈ I such
that

hi,k(x) = hj,k(x).

Then ∼ is an equivalence relation on the disjoint
union of given groups that admits to de�ne multi-
plication of equivalence classes induced by multi-
plication rules in given groups.
De�nition 4. The inductive limit of the system
(G(i), hi,j), i, j ∈ I is the group de�ned as

lim
−→

G(i) =
⊔
i∈I

G(i)/ ∼ .

Homogeneous system of generators. Let
G(1) < G(2) < . . . < G(n) < . . ., n ∈ N be an as-
cending group series. Let i, j be natural numbers,
i < j. We de�ne the homomorphism hi,j from G(i)
to G(j) as the embedding mapping between these
groups, i.e.

hi,j(g) = g, g ∈ G(i).

Then the inductive limit of the system (G(i), hi,j),
i, j ∈ N is well-de�ned.
De�nition 5. A groups-generators series G is the
sequence of pairs (G(n), SoG(n)|n ∈ N) such that:
1. G(1) < G(2) < . . . < G(n) < . . . is an ascend-
ing group series;
2. SoG(n) is a system of generators of G(n) and

SoG(n) ⊂ SoG(n+ 1), n ∈ N.

Let G be a groups-generators series.
Denote by IL(G) the inductive limit of the sys-

tem (G(i), hi,j), i, j ∈ N with embedding mappings
hi,j .

Denote by GDiff(n) the set of generators,
which appear exactly on the nth, n ≥ 1, i.e.
1. GDiff(1) = SoG(1),
2. GDiff(n) = SoG(n)\SoG(n− 1), n ≥ 2.
De�nition 6. The groups-generators series G is
called uniform if:

〈
t⋃

k=1

GDiff(ik)〉 ' G(t),

for every index tuple I = (ii, i2, · · · , it) of cardi-
nality t.

Let C be a natural number.
De�nition 7. The groups-generators series G is
called C-stable if:

|GDiff(t)| = C, t ≥ 1.

Let the groups-generators series G be C-stable.
Suppose that elements from

⋃
n≥1

SoG(n) are enu-

merated ⋃
n≥1

SoG(n) = {si ∈ G|i ∈ N}

and the following conditions hold:
1. SoG(n) = {s1, s2, ..., sC , sC+1, . . . , sn·C}, n ≥ 1
2. GDiff(n) = {s(n−1)·C+1, s(n−1)·C+2, . . . , sn·C},
n ≥ 1.

Let I = (i1, i2, · · · , it) be an index tu-
ple. De�ne the mapping hCI from 1, t · C to
t⋃

k=1

(ik − 1) · C + 1, ik · C by the rule:

hCI (x) = (i[(x−1)/C]+1 − 1) ·C + (x− 1)modC + 1

Note that the unique representation of x =
= (k − 1) · C + r, k ∈ 1, n, r ∈ 1, C leads to the
equality

hCI ((k − 1) · C + r) = (ik − 1) · C + r. (1)

The last equality can be reinterpreted as follows:
if x is the index of the rth generator of GDiff(k),
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then hCI (x) is the index of the rth generator of
GDiff(ik).

Now de�ne a mapping

ψCI : SoG(n)→
n⋃
k=1

GDiff(ik)

by the rule:
ψCI (si) = shC

I (i).

We will use notations

1. SoGI(n) =
n⋃
k=1

GDiff(ik);

2. GI(n) = 〈SoGI(n)〉.
Note that SoGI(n) is the image of SoG(n) under
ψCI .
De�nition 8. A uniform and C-stable groups-
generators series G is called homogeneous if for ev-
ery natural t and every index tuple I of cardinality
t the mapping ψCI can be extended to the group
isomorphism between G(t) and GI(t).

We will omit the letter C in notations ψCI , h
C
I .

We will use notations ψI , hI instead, unless other-
wise stated in this paper.

Homogeneous equivalence. Let G be a ho-
mogeneous groups-generators series. We de�ne a

binary relation
H' on IL(G).

De�nition 9. Let a, b be elements from IL(G).

We write a
H' b if there exist index tuples I, J of

the same cardinality n such that:
1. a ∈ GI(n);
2. b ∈ GJ(n);
3. (ψI

−1 ◦ ψJ)(a) = b.

Lemma 14. The binary relation
H' is an equiva-

lency.
Proof. Re�exivity. Let a be an element from
IL(G). The de�nition of the inductive limit im-
plies the existing of natural n such that a ∈ G(n).
Then for the index tuple I = (1, 2, . . . , n):

a ∈ GI(n) = G(n) and ((ψI)
−1◦ψI)(a) = id(a) = a.

Symmetricity. Let a, b be elements from IL(G)

and a
H' b. Then there exist index tuples I, J of

the same cardinality n:

a ∈ GI(n), b ∈ GJ(n) and ((ψI)
−1 ◦ ψJ)(a) = b.

From the de�nition of
H' we obtain

a = ((ψI)
−1 ◦ ψJ)−1(b)

Then the equality

((ψI)
−1 ◦ ψJ)−1(b) = ((ψJ)

−1 ◦ ψI)(b),

implies the equality

((ψJ)
−1 ◦ ψI)(b) = a.

Transitivity. Let a, b, c ∈ IL(G) be such that a
H' b

and b
H' c. From the de�nition of

H' it follows that
there exist index tuples I, J1 of cardinality n1 such
that

a ∈ GI(n1), b ∈ GJ1(n1), ((ψI)
−1 ◦ ψJ1)(a) = b,

(2)
and also exist index tuples J2,K of cardinality n2
such that

b ∈ GJ2(n2), c ∈ GK(n2), ((ψJ2)
−1 ◦ ψCK)(b) = c.

(3)
Denote by m the cardinality |J1

⋂
J2|. Let

A = (max
i∈I

i+ 1, . . . ,max
i∈I

i+ n2 −m),

B = (max
k∈K

k + 1, . . . ,max
k∈K

k + n1 −m)

and de�ne the following index tuples:

I = I tA,

J1 = J1 t (J2\J1),

K = K tB,

J2 = J2 t (J1\J2).

Denote by N the sum n1 +n2−m. Then |I| =
= |J1| = |K| = |J2| = N .

Denote by g1 the element (ψI)
−1

(a). Then
g1 ∈ G(n1). Equality (2) implies that g1 =

= (ψJ1)
−1

(b). Since I = I t A the inclusion
SoGI ⊃ SoGI(G) holds. It implies that GI(N) >
> GI(n1). Hence, we obtain

(ψI)
−1

(a) = (ψI)
−1

(a) = g1. (4)

Similarly, from the equality J1 = J1tB we obtain:

(ψJ1)
−1

(b) = (ψJ1)
−1

(b) = g1. (5)

Denote by g2 the element (ψK)
−1

(c). Equation (3)
implies that g2 ∈ G(n2). Similar to the previous
case one can show that
1. (ψJ2)

−1
(b) = (ψJ2)

−1
(b) = g2,

2. (ψK)
−1

(c) = (ψK)
−1

(c) = g2.
Since index tuples J1 and J2 contains the same

numbers, we have the equality GJ1(N) = GJ2(N).
Then the mapping

(ψI)
−1 ◦ ψJ1 : GI(N)→ GJ1(N)

maps a to b and the mapping

(ψJ2)
−1 ◦ ψK : GJ2(N)→ GK(N)

maps b to c.
It follows that the composition

(ψI)
−1◦ψJ1◦(ψJ2)

−1◦ψK : GI(N)→ GK(N) (6)
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maps a to c.
We are left to show that the composition (6)

can be re-combined so that it is a product of two

isomorphisms, according to the de�nition of
H'. It

is enough to show that there exists an index tuple
I
′
of cardinality N such that:

(ψI′ )
−1 = (ψI)

−1 ◦ ψJ1 ◦ (ψJ2)
−1
.

Assume that I = (i1, . . . , iN ). Note that J1 = J2.
Hence, there exists a permutation π : 1, N → 1, N
such that:
1. J1 = (jπ(1), . . . , jπ(N));

2. J2 = (j1, . . . , jN ).
Let s be arbitrary generator from SoG(N). Then
its index is t = (k − 1) · C + r for some k ∈ 1, N ,
r ∈ 1, C. Then from (1) we obtain

hJ2(t) = (jk − 1) · C + r = (jπ(t) − 1) · C + r,

(hJ1)
−1((jπ(t) − 1) · C + r) = (t− 1) · C + r,

(hI)
−1((t− 1) · C + r) = (it − 1) · C + r,

where t � position of jt in J2, which is mapped to
jk by π. De�ne the index tuple I

′
:= (it|π(t) =

= k, k ≥ 1). Then

ψI′ (s) = ((ψJ2) ◦ (ψJ1)
−1 ◦ ψI)(s).

From the de�nition of
H' we obtain (ψI′

−1 ◦
ψK)(a) = c.

The proof is complete.
De�nition 10. Elements a, b ∈ IL(G) are called

homogeneously equivalent if a
H' b.

De�nition 11. The homogeneous class of an ele-
ment a ∈ IL(G) is the subset of all elements from
IL(G), which are homogeneously equivalent to a:

HC(a) = {b ∈ IL(G)|a H' b}.

Properties of a homogeneous class.

Lemma 15. The set {e} is the (trivial) homoge-
neous class of e.
Proof. Let a ∈ G(n) for some natural n. Suppose
that a ∈ HC(e), a 6= e. From the de�nition of the

homogeneous equivalence we obtain e
H' a. This

means that there exist index tuples I, J of cardi-
nallity n such that:

(ψ−1I ◦ ψJ)(e) = a.

Note that ψI , ψJ are group isomorphisms. Hence,
ψ−1I ◦ψJ is a group isomorphism as well. It means
that

(ψ−1I ◦ ψJ)(e) = e,

which leads to a contradiction with ineaquality a 6=
6= e.

The proof is complete.

Lemma 16. Let a ∈ GI(n), b ∈ GJ(n) and a
H' b

for some index tuples I, J of cardinality n. Then

|a|SoGI(n) = |b|SoGJ (n).

Proof. Denote by l the length |b|SoGJ (n). Suppose
that

|a|SoGI(n) > l.

Then there exist generators sj1 , sj2 , . . . , sjl ∈

∈ SoGJ(n) such that b =
l∏

k=1

sjk .

Since the groups-generators series G is homo-
geneous the decomposition

l∏
k=1

(ψ−1J ◦ ψI)(sjk) =
l∏

k=1

s(h−1
J ◦hI)(jk)

= a

is a decomposition of the element a over SoGI(n).
Hence, |a|SoG(n) ≤ l. A contradiction.

Similarly the assumption |a|SoGI(n) < l leads
to a contradiction.

The proof is complete.

Lemma 16 gives rise to the following de�nition.

Let HC be a homogeneous class such that its
intersection with G is non-trivial.
De�nition 12. A length of the homogeneous class
HC over S is de�ned as:

|HC|S = |a|S ,

where a is an element from HC
⋂
G.

Lemma 17. Let a, b ∈ G(n), a H' b for some nat-
ural n. Then there exists an automorphism ψ of
G(n) such that:

ψ(a) = b,

whose restriction on SoG(n) is a permutation.

Proof. From a
H' b it follows that for some index

tuples I, J the mapping ψ := (ψI)
−1 ◦ ψJ is an

automorphism of G(n) such that

ψ(a) = b.

From the de�nition of mappings ψI , ψJ it fol-
lows that the composition ψ is a permutation on
SoG(n).
Lemma 18. Let HC be a homogeneous class and
a be a properly generated element from HC

⋂
G(n)

over SoG(n) for some natural n. Then every el-
ement of HC

⋂
G(n) is properly generated over

SoG(n).
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Proof. Let b be an element from HC
⋂
G(n).

Suppose that b is not properly generated over
SoG(n). Then there exists a decomposition
D = (si1 , . . . , sil) of b over SoG(n) such that
SoG(n)\D 6= ∅ as sets. Note that a, b belong to the
same group G(n). Since b ∈ HC we have b

H' a.
Then from Lemma 17 for b, a implies that there
exists an automorphism of G(n) such that

ψ(b) = a.

The homogeneous property of groups-
generators series G implies that ψ(D) =
= (ψ(si1), . . . , ψ(sil)) is a decomposition of the
element a over SoG(n). Moreover, the restric-
tion of ψ on SoG(n) is a permutation. Hence,
SoG(n)\ψ(D) 6= ∅ as sets. It means, that the
element a is not properly generated over SoG(n).
A contradiction.

The proof is complete.

Proposition 19. Let HC be a homogeneous class
and a ∈ HC

⋂
G(n) for some natural n. If a is a

diameter element of G(n), then every element of
HC

⋂
G(n) is a diameter element of G(n).

Proof. Directly implies from the previous lemma.

Homogeneous down search algorithm

Let G be a homogeneous groups-generators se-
ries, n be a natural number. Assume that G =
= G(n), S = SoG(n).

Let HC be a homogeneous class such that
HC

⋂
G 6= ∅. Fix an element hc ∈ HC

⋂
G. We

de�ne the product

HC ∗ S = {HC(hc · s)|s ∈ S}, (7)

Lemma 20. The product (7) of the homogeneous
class HC and the system of generators S is well
de�ned.
Proof. Let hc1, hc2 be di�erent elements from
HC

⋂
G. Lemma 17 for hc1, hc2 states that there

exists an automorphism ψ of G such that:

ψ(hc1) = hc2.

Since elements from the same group both index
tuples I and J consist of numbers {1, 2, . . . , n}.
Therefore, there exists a permutation π : I · C →
J · C such that:

ψ(si) = sπ(i)

for every i ∈ 1, n · C. Note that n · C = |S|.
Let i, j ∈ 1, |S| be indices of generators in S,

π(i) = j. Then

hc2 · sj = hc2 · sπ(i) = ψ(hc1) · ψ(si) = ψ(hc1 · si).

The de�nition of homogeneous equivalence implies
that hc2 · sj ∈ HC(hc1 · si). Hence, for every gen-
erator sj ∈ S there exists unique si ∈ S such that

hc2 · sj ∈ HC(hc1 · si).

The de�nition of homogeneous equivalent now im-
plies the equality

HC(hc2 · sj) = HC(hc1 · si).

Then moving through all generators of S we have:

{HC(hc2 · s)|s ∈ S} = {HC(hc1 · s)|s ∈ S}.

The proof is complete.

The following down search algorithm is based
on homogeneous classes.

Algorithm 4: Homogeneous down search
algorithm

Input: G � a group, S � its system of
generators

Result: Diameter DS(G)
Initialization: found = {HC(e)},
all = {HC(g)|g ∈ G},
current_level = {HC(e)}, level = 0;
while found 6= all do

previous_level, current_level =
current_level, {};
for HC ∈ previous_level do

current_level =
= current_level

⋃
HC ∗ S;

end

current_level =
= current_level\found;
found = found

⋃
current_level;

level = level + 1;

end

Output: level

Lemma 21. Let a ∈ G, |a|S = l. Then l is the
number of iterations of the main loop of homoge-
neous down search algorithm required to obtain the
homogeneous class HC(a).
Proof. Induction on l.

The basis: case l = 1. Note that on the initial-
ization phase of the algorithm we have equalities

current_level = found = {HC(e)}.

Hence, when level = 1 and CL = current_level
the following set of homogeneous classes will ap-
pear:

(
⋃

HC∈CL
HC ∗ S)

∖
found =

= (HC(e) ∗ S)
∖
{HC(e)} =

= {HC(e·s)|s ∈ S}
∖
{HC(e)} = {HC(s)|s ∈ S}.
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Let |a|S = 1. Then there exists i ∈ 1, |S|
such that a = si. From previous equalities for
current_level it follows that the class HC(si) will
appear on the �rst iteration of the main loop.

From the other hand, let HC(a) appears on the
�rst iteration of the main loop. Then, from pre-
vious equalities for current_level it follows that
there exists s ∈ S such that HC(s) appears as a
product e · s on the �rst step of the main loop and
equality HC(s) = HC(a) holds.

Lemma 17 implies that there exists an auto-
morphism ψ of G such that:

ψ(s) = a.

Note that by the same Lemma, ψ is a permuta-
tion on S. Then there exists j ∈ 1, |S| such that
ψ(s) = sj = a. Hence, |a|S = |sj |S = 1.

Inductive step: case l+1 under assumption that
for l the statement holds.

Let |a|S = l + 1. Then there exist
i1, i2, . . . , il+1 ∈ 1, |S| such that:

a =

l+1∏
k=1

sik .

Then the element b =
l∏

k=1

sik has length l. Oth-

erwise, the length of a over S is less than l + 1.
Then, by inductive assumption, HC(b) appears on
the lth step of the algorithm. Lemma 21 implies
that HC(a) = HC(b · sil+1

). Then HC(a) appears
on the (l+ 1)th iteration of the algorithm. Other-
wise, the element a appears on the same previous
level. It leads to a contradiction with inductive
assumption.

Let HC(a) appears on the (l+1)th step of the
algorithm. Then for some b ∈ G and s ∈ S we
have the equality

HC(a) = HC(b · s).

The inductive assumption implies |b|S = l. The

last equality leads to equality b ·s = (
l∏

k=1

sik) ·s for

some sik ∈ S. This decomposition is minimal for
b ·s. Otherwise, HC(b ·s) = HC(a) appears earlier
than on (l+ 1)th level. Therefore |a|S = |HC|S =
= l + 1.

The proof is complete.

Corollary 22. Let HC be a homogeneous class
and HC appears on the lth step of homogeneous
down search algorithm for G and S. Then |el|S =
= l for every el ∈ HC

⋂
G.

Proof. Let a ∈ HC
⋂
G. Lemma 21 implies that if

HC appears on the lth step of the algorithm then
|a|S = l.

The proof is complete.

Theorem 23. Homogeneous down search algo-
rithm is correct.

Proof. The algorithm terminates if and only if
found = all. This equality holds if and only if
every homogeneous class with non-trivial intersec-
tion with G appears at least once. This statement
follows from Lemma 21 and existence of the mini-
mum decomposition for every element.

Moreover, the last level of the algorithm con-
tains homogeneous classes of elements of G, which
have the maximum length over S. It means that if
algorithm stops on step l, then from Corollary 22
it follows

|el|S = l = DS(G)

for every HC ∈ lastlevel and every el ∈ HC
⋂
G.

The proof is complete.

Homogeneous middle down search

algorithm

Let G be a homogeneous groups-generators se-
ries, n be a natural number. Assume that G =
= G(n), S = SoG(n).

Let HC be a homogeneous class with nontrivial
intersection with G. Recall that

HC · S = {HC(hc · s)|s ∈ S},

where hc is a �xed element from the intersection
HC

⋂
G.

We will use the following notations:

1. Gfh is the set of all properly generated homo-
geneous classes of the group G over S.

2. Dfh(S,m) is the set of all decompositions over
S of length m such that the following property
holds:
if some element of a homogeneous class has a de-
composition of length m then Dfh(S,m) contains
at least one decomposition of length m of some
element of this homogeneous class, i.e

if D ∈ Df (S,m), P (D) ∈ HC then

there exists DH ∈ Dfh(S,m)

such that P (DH) ∈ HC.
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Algorithm 5: Homogeneous middle
down search algorithm

Input: G � a group, S � its strictly
growing system of generators

Result: Diameter DS(G)
Initialization: found = ∅, all = Gfh,
level = |S| − 1;
while found 6= all do

level = level + 1;
for decomp ∈ Dfh(S, level) do

product = HC(P (decomp));
if product ∈ Gfh then

found = found
⋃
product;

end

end

end

Output: level

Theorem 24. The homogeneous middle down
search algorithm is correct.
Proof. Letm be the iteration of homogeneous mid-
dle down search algorithm when found = all. Let
DS(G) = l for some natural l.

Suppose that a ∈ G is a diameter element of G.
Then strictly growing property implies that the el-
ement a is properly generated. Lemma 10 implies

that the length of a over S is not less than |S|.
It follows that the minimum decomposition of the
element a belongs to Df (S, l). Homogeneous prop-
erty implies that Dfh(S, l) contains a decomposi-
tion de�ning a product homogeneously equivalent
to a. And this decomposition has the same length
l. Therefore, we have the inequality

m ≥ l.

Let HC be a homogeneous class. Suppose that
HC is found on step greater than l. It follows
that there is no decomposition of HC with length
from |S| to l. Lemma 16 implies that there is no
decomposition of any element from HC

⋂
G with

length from |S| to l. But the diameter element of
G has length l. It means that there exists a de-
composition of an element from HC

⋂
G of length

stricktly less than |S|. From Lemma 10 it follows
that every element of HC

⋂
G is not properly gen-

erated. Hence, HC is not in Gfh. We obtain the
inequality

m ≤ l.

Therefore, we have the equality m = l.

The proof is complete.
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Îëüøåâñüêèé Ì. Ñ.

ÀËÃÎÐÈÒÌÈ ÏÎØÓÊÓ ÄIÀÌÅÒÐÀ ÎÐI�ÍÒÎÂÀÍÈÕ

ÃÐÀÔIÂ ÊÅËI

Ðîçãëÿíóòî äîáðå âiäîìó çàäà÷ó ïîøóêó äiàìåòðà ñêií÷åííî¨ ãðóïè. Âîíà ôîðìóëþ¹òüñÿ òàê:
çíàéòè íàéáiëüøèé ñåðåä äiàìåòðiâ ãðóïè âiäíîñíî ¨¨ ñèñòåì òâiðíèõ. Äiàìåòðîì ãðóïè ¹ äià-
ìåòð ãðàôà Êåëi, ùî áóäó¹òüñÿ íà îñíîâi ãðóïè òà ¨¨ ñèñòåìè òâiðíèõ. Ó öié ðîáîòi ðîçãëÿíóòî
ïiäçàäà÷ó çàäà÷i ïîøóêó äiàìåòðà ãðóïè, à ñàìå, çàäà÷ó çíàõîäæåííÿ äiàìåòðà ãðóïè âiäíîñíî
çàäàíî¨ ñèñòåìè òâiðíèõ. Ïîêàçàíî, ùî öÿ çàäà÷à ïîëiíîìiàëüíî çâîäèòüñÿ äî çàäà÷i ïîøóêó
ìiíiìàëüíèõ ðîçêëàäiâ åëåìåíòiâ.

Äëÿ ðîçâ'ÿçàííÿ çàäà÷i çíàõîäæåííÿ äiàìåòðà ãðóïè âiäíîñíî çàäàíî¨ ñèñòåìè òâiðíèõ çàïðî-
ïîíîâàíî ï'ÿòü àëãîðèòìiâ: ïðîñòèé àëãîðèòì ïîøóêó âíèç, øâèäêèé àëãîðèòì ïîøóêó âíèç,
ñåðåäèííèé àëãîðèòì ïîøóêó âíèç, îäíîðiäíèé àëãîðèòì ïîøóêó âíèç òà îäíîðiäíèé ñåðåäèííèé
àëãîðèòì ïîøóêó âíèç.

Ïåðøi äâà àëãîðèòìè ¹ óíiâåðñàëüíèìè, à iíøi âèìàãàþòü âèêîíàííÿ äîäàòêîâèõ óìîâ íà
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ñèñòåìè òâiðíèõ.
Äëÿ àëãîðèòìó ñåðåäèííîãî ñïóñêó ââåäåíî ïîíÿòòÿ ñòðîãî çðîñòàþ÷î¨ ñèñòåìè òâiðíèõ. Çà

âèêîíàííÿ öi¹¨ óìîâè, ïîøóê ìiíiìàëüíèõ ðîçêëàäiâ ïîòåíöiéíèõ íàéäîâøèõ ðîçêëàäiâ ìîæíà
ïî÷àòè îäðàçó æ iç ïåâíî¨ ìíîæèíè.

Ââåäåíî îêðåìó òåîðiþ îäíîðiäíîñòi. Â íié ðîçãëÿäàíóòî ðÿäè ãðóï òà ¨õ ñèñòåì òâiðíèõ, ùî
çàäîâîëüíÿþòü ïåâíèì äîäàòêîâèì óìîâàì. Ââåäåíî âëàñòèâiñòü îäíîðiäíîñòi òàêèõ ðÿäiâ òà
âiäíîøåííÿ åêâiâàëåíòíîñòi ¨õ åëåìåíòiâ. Îñíîâíîþ ìåòîþ ââåäåííÿ òàêîãî âiäíîøåííÿ ¹ çáå-
ðåæåííÿ ðîçêëàäiâ ¨¨ åëåìåíòiâ â îäíîìó êëàñi. Öÿ âëàñòèâiñòü äà¹ ìîæëèâiñòü îáðàõîâóâàòè
ìiíiìàëüíèé ðîçêëàä ëèøå äëÿ ïðåäñòàâíèêà êëàñó åêâiâàëåíòíîñòi.

Äëÿ àëãîðèòìiâ îäíîðiäíîãî ïîøóêó âíèç òà îäíîðiäíîãî ñåðåäèííîãî ïîøóêó âíèç íåîáõiäíîþ
óìîâîþ çàñòîñóâàííÿ ¹ íàëåæíiñòü ãðóïè äî îäíîðiäíîãî ãåíåðàòèâíîãî ðÿäó ãðóï. Òîäi çàäà÷à
çíàõîäæåííÿ ìiíiìàëüíèõ ðîçêëàäiâ åëåìåíòiâ çâîäèòüñÿ äî çíàõîäæåííÿ ìiíiìàëüíèõ ðîçêëà-
äiâ ïðåäñòàâíèêiâ êëàñiâ åêâiâàëåíöi¨.

Ïîêàçàíî, ùî âñi îïèñàíi àëãîðèòìè ¹ êîðåêòíèìè. Çðîáëåíî îöiíêè ñêëàäíîñòi ¨õ ðîáîòè.
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Ìàòåðiàë íàäiéøîâ 25.10.2021

Creative Commons Attribution 4.0 International License (CC BY 4.0)


