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DIAMETER SEARCH ALGORITHMS FOR DIRECTED
CAYLEY GRAPHS

It is considered a well known diameter search problem for finite groups. It can be formulated as
follows: find the mazimum possible diameter of the group over its system of generators. The diameter
of a group over a specific system of generators is the diameter of the corresponding Cayley graph. In
the paper a closely related problem is considered. For a specific system of generators find the diameter
of corresponding Cayley graph. It is shown that the last problem is polynomially reduced to the problem
of searching the minimal decomposition of elements over a system of generators.

It is proposed five algorithms to solve the diameter search problem: simple down search algorithm,
fast down search algorithm, middle down search algorithms, homogeneous down search algorithm and
homogeneous middle down search algorithm.

The first two algorithms are universal. They can be applied to any finite group and its systems of
generators. Moreover, the fast down search algorithm is an optimized version of the simple down search
algorithm.

A property of strict growing fora system of generators is introduced. In this case the search process can
be optimized by focusing only on those group elements, for which minimum decompositions potentially
have the mazimum possible length. Based on this property middle down search algorithm is introduced.

The main part of the paper is homogeneous theory. It is considered a series of groups with its
systems of generators and some additional properties of them. It is defined a homogeneous property of
these series. A binary equivalence relation relies on it. The main purpose of defining such a relation is
preserving decompositions of elements from the same equivalence class. It is enough to find the minimum

decomposition of only one representative of the equivalence class.
It is introduced homogeneous down search and homogeneous middle down search algorithms. These
algorithms can be applied to groups that belong to homogeneous series of groups with systems of gener-

ators.

For every algorithm its correctness is shown. The complexity estimations for algorithms is discussed.

Keywords: Cayley graph, diameter of group, system of generators.

Introduction

The diameter search problem in group theory
can be formulated as follows: for a finite group G
find the maximum of its diameters D(G) over all
systems of generators of G. A few general results
in this area are known. The most general conjec-
ture was proposed by L. Babai and A. Seress in
[1, Conjecture 1.7]:

Conjecture 1. If G is a non-abelian finite simple
group of order N, then D(G) < (log N) for the
absolute constant C.

The first family of finite simple groups, for
which this conjecture was proved by H. Helfgott
in [2], is PSL2(Z/pZ), where p is a prime. For
groups of Lie type an upper bound of the diameter
was found by E. Breuillard, B. Green, and T. Tao
in [3] and by L. Pyber and E. Szabé in [4]. For per-
mutation groups upper bounds of diameters were
presented by H. Helfgott and A. Seress in [5].

We can also consider in this domain another
© M. Olshevskyi, 2021

widely known problem, the minimum-length gen-
erators sequence search problem. Specifically, for a
given finite group G, its system of generators S and
a target element g € G find a shortest generator se-
quence realizing g. In particular, for permutation
groups such a problem is NP-hard [6].

As a partial case of the diameter search problem
one can deal with the diameter search for a finite
group over a fixed system of generators. For exam-
ple the diameter of Sym(n) over S = {(1,k)|k €
€2,...,n} was found in [7].

In this paper we consider the diameter search
problem for directed Cayley graphs. We introduce
different algorithms and discuss their properties.

The paper is organized as follows:

1. Section Introduction contains basic notations
and decomposition problem description. The rela-
tion between decomposition problem and diameter
search problem is demonstrated.

2. Section Simple down search algorithm intro-
duces universal diameter search algorithm and
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proves its correctness.

3. Section Fast down search algorithm introduces
infinite decomposition trees and optimized version
of simple down search algorithm. It is proved cor-
rectness of the algorithm.

4. Section Middle down search algorithm intro-
duces strict growing property of a system of gener-
ators and diameter search algorithm, based on it.
It is proved correctness of this algorithm.

5. Section Homogeneous theory introduces
groups-generators series, properties of them and
homogeneous equivalence between elements of
groups.

6. Section Homogeneous down search algorithm
introduces algorithm, which requires homogeneous
property of groups-generators series. It is proved
its correctness.

7. Section Homogeneous middle down search algo-
rithm introduces diameter search algorithm, which
requires both homogeneous property of groups-
generators series and strict growing of system of
generators. It is proved correctness of the algo-
rithm.

Preliminaries

Unless otherwise specified in the paper we de-
note by G a finite group and by S a system of
generators of G.

Basic notation. The following notations will
be used:

1. kmodm — the remainder of division of integer
k by integer m # 0.

2. ny,ny — the set of natural
{n1,...,na}, where n; < no.

3. fog:=g(f) — the right composition of map-
pings f,g.

We define an indez tuple I as a tuple of pair-
wise different natural numbers, i.e. for some n > 0
we have

numbers

iy # insj # .
In other words, every index tuple is a linearly or-
dered finite set of natural numbers. We call n the
cardinality of the index tuple I. Sometimes we
abuse terminology and refer to index tuples as to
sets with no ordering.

Let I, J be disjoint index tuples (i.e. they have
no common elements) with cardinalities n1,ng re-
spectively. Then we define the concatataion of
them as

I=(i1,02,...,0n),

I|_|J: (’i17...,7;n1,j1’-"7jn2)'

Let I, J be index tuple with cardinalities ny, no
respectively. Then their difference is defined as

I\J — the tuple of numbers from the set I'\J,

ordered as in 1.
Note that I\J can be empty.

Diameter search problem.

Definition 1. The (right) Cayley graph of G
over S is a colored directed graph Cay(G, S) con-
structed as follows:

1. the set of vertices is G;

2. the set of colors is S;

3. for any g € G and s € S, the vertices g and g- s
are connected by a directed edge of color s.

Since S generates G the Cayley graph of G over
S is a strongly connected graph.

Remind that the distance between two vertices

in a directed strongly connected graph is the length
of the shortest oriented path which connects them.
The diameter of the graph is the maximum of dis-
tances between its vertices.
Definition 2. The diameter of the group G with
respect to the system of generators S is the diam-
eter of the corresponding Cayley graph Cay(G, S)
of the group G over S:

Ds(G) = D(Cay(G, 5)).

Definition 3. The diameter of the group G is de-
fined as the maximum of diameters of G over its
systems of generators:

D(G) = max Ds(G).

L, (S)=G
Decomposition pm%lem. Every element g of
G can be decomposed into a product

!
9= 115
k=1

of generators from S for some natural [. Corre-
sponding tuple of generators (s;,,...,s;,) will be
called a decomposition of the element g over S.
The length |g|s of the element g over S is the
length of the shortest decomposition of g over S.

Let us formulate the following computational
problem.

Decomposition problem: for a given group G
and its system of generators S find the maximum
of lengths of its elements over S.

Let g1, g2 be vertices from Cay(G, S). Denote

by d(g1, g2) the distance between g; and g, over S.
Theorem 1. The diameter search problem is
polynomial-time reducible to the decomposition
problem.
Proof. Let | be the diameter of the group G with
respect to the system of generators S. It means
that there exist vertices gi1,g2 from Cay(G,S)
such that d(g1,¢92) = I. It immediately implies
d(g1,g2) = d(e, h), where h = go - g *. Hence, the
labels of the shortest path between e and go - g1
form a decomposition of h over S. The statement
immediately follows.
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An element a € G will be called diameter ele-
ment of group G over S if its length over S equals
to diameter of group G over S:

lals = Ds(G).
Simple down search algorithm
Consider an algorithm of finding diameters that

are based on breadth-first search algorithm [8] for
graphs.

Algorithm 1: Simple down search algo-
rithm
Input: G — a group, S — its system of
generators
Result: Diameter Dg(G)
Initialization: found = {e},
all = {glg € G}, current_level = {e},
level = 0;
while found # all do
current_level = current level - S
found = found|J current _level;
level = level + 1;
end
Output: level

Theorem 2. Simple down search algorithm is cor-
rect.
Proof. We need to show that:
1. the algorithm has no “dead” loops;
2. the output of the algorithm is the diameter
Ds(G).
These two parts will be proved separately.

Part 1. Let a be arbitrary element of the group
G. Since S generates G there exists a decomposi-
tion of a over S:

l
a = H Sip-
k=1

Therefore, the element a will belong to found at
the moment when level = [.

Since the group G is finite there exists n such
that at the moment level = n we obtain found =
= all.

Part 2. Let us denote Dg(G) by d. Suppose

that d # level, where level is the output of simple
down search algorithm for group G over S. Con-
sider two cases.
1. Assume that d < level. Then, for every element
a of the group G there exists its decomposition over
S with length | < d. The set found is redefined in
the algorithm on each loop. Hence, at the moment
level = d we have:

d
all = found = {e}| J(J S...9),
=1

1 times

which means that level < d. A contradiction.

2. Assume that d > level. Then there exists an
element a of the group G with length d over S. By
the definition of length over system of generators
there are no sets of indices {iy,ia, - ,41}, I < d
such that:

l
a = H Sip -
k=1

Therefore, the set found does not contain the el-
ement a when the algorithm stops. This leads to
a contradiction with the requirement that found
equals to all.

The proof is complete.
Proposition 3. Let G be a finite group generated
by S, |S| = n and Dg(G) = m. Then the total
number of multiplications in simple down search
algorithms is bounded from above by %
Proof. At the moment level = k+ 1 the algorithm
needs to multiply every element of the previous
level by every generator. Then we obtain the fol-
lowing number of multiplications: |current levell-
|S| = |S|* - |S| = nk*t!. As the result, the total
number of multiplications will be

m

(™M -1
anJrl:n (n ).
k=1

n—1
The proof is complete.

Fast down search algorithm

We need to define additional structures in order
to describe another algorithms, in particular fast
down search algorithm. After that we will prove
a few statements to connect simple down search
algorithm and fast down search algorithm.

Infinite decomposition tree. Let G be a
finite group, S = {s1,82, -+ ,8m} be its system
of generators. Consider infinite rooted m-ary tree
T(V,E). We introduce enumeration of vertices on
each level of this tree. The vertices of the [th level
will be enumerated by numbers from 1 to m!, [ > 0.
We obtain that
1. the root is the first vertex of level 0.

2. the kth child of the tth vertex of level [ will have
index ((t — 1) -m + k) on level (I +1).

We also label vertices and edges of the tree
T(V, E) starting from level 0 as follows:

1. the root will be labeled by e.

2. the edge, which connects the kth vertex of level
I with ([k/m] + 1)th vertex of level (I — 1), will be
labeled by kmodm, k€ 1,...,mk.

3. the kth vertex of level [ will be labeled by the
result of product: b- Sk modm, Where b is the label of
([k/m] + 1)th vertex of level (I—1), k€ 1,...,ml.
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We call such a tree the infinite decomposition tree
of the group G over the system of generators S.
A path in this tree will be identified with the se-
quence of labels on edges along this path.

Let T be the infinite decomposition tree of the
group G over S.
Lemma 4. An element a from G has decomposi-

l
tion [ s:, if and only if the path iy,is,---i; con-
k=1

nects the root vertex with the vertex labeled by a in
T.
Proof. Induction on the decomposition length [.

The basis: casel = 1.

Necessity. Let a = s;, for k € 1,...,m. The
equality e - s;, = a implies that the kth vertex on
level 1 will have the label a.

Sufficiency. Let the kth vertex of the first level
be labeled by a. Then, from the definition of the
infinite decomposition tree we have a = e - s;,.
Then a = s;. Hence, a has a decomposition of
length 1, i.e. s;,.

Induction step: case l+1 under assumption that
for 1 the statement holds.

I+1
Necessity. Let a = [] s;,. Under inductive as-
k=1

!
sumption for the element b = [] s;, we have: the

k=1
path iq,is,...,%; connects the root with the vertex
w labeled by b. The equality a = b - s;,,, implies
that the (4;41)th child v of the vertex w is labeled
by a. Hence, 41,19, ...,4%4+1 is a path from the root
to w.

Sufficiency. Let i1,140,...,7;+1 be a path, which
connects the root with the vertex v labeled by a.
The definition of the infinite decomposition tree
implies the equality

a="b-s;,,,

where b is a label of the vertex w, the parent of the
vertex v.

From the inductive assumption we have that
l
the product H s;, equals to the element b. There-

fore, the product

l
(H S'lk) *Sip
k=1

equals to the element a.

Proposition 5. Let G be a group, S be its system
of generators, | be a natural number.

1. The diameter of the group G over the system of
generators S equals to | if and only if | is the small-
est level number in T such that every element of G
appears at least once as a label of a vertex starting
from level O up to level I.

I+1

=11
k=1

2. In simple down search algorithm an element a €
€ G appears at the moment level =1 if and only if
there exists a path iq,1s,...,19; which connects the
root with the vertex v labeled by a in T.
Proof. 1. The diameter of the group G over S
equals to [ if and only if for every element a of G
there exists a decomposition over S with length <
< [l. The last statement holds if and only if there
exists a path with length < [ which connects the
root with a vertex labeled by a. Therefore, for ev-
ery element a of G there exists at least one vertex
labeled by a on levels from 0 to .

2. The element a appears in the simple down
search algorithm at the moment level = [ if
and only if there exists a sequence of generators

,8;, € S such that a = H 8i,. From

5i175i2,~-

Lemma 4 it follows that the last statement holds if
and only if the path 41,4, ...,4; connects the root
with vertex labeled by a.

The proof is complete.

Let v be a vertex of the tree 7" on level ¢. Recall
that the sub-tree T|, of T rooted at the vertex v is
the tree constructed from T as follows:

1. the root of new tree T, is v.

2. the ith level of tree T, consists of vertices from
(t+ )th level of T which are directly connected to
(I — 1)th level of T,, I > 1. Labels of edges and
vertices are preserved.

Denote by g, the label of a vertex v in 7.
Lemma 6. Let v,w be vertices of T such that the
labels of v and w are equal. Then the rooted trees
T, and T\, are isomorphic as labelled graphs.
Proof. Note, that T|, and T|,, are isomorphic as
rooted m-ary trees. The natural isomorphism 7
preserving enumeration of vertices on levels is de-
fined as follows:

1. the kth vertex of the Ith level of T'|, is mapped
to the kth vertex of the Ith level of T)|,, k € 1,C!
l>0;

2. an edge, which connects two vertices of the tree
T|», is mapped to the edge, which connects images
of corresponding vertices.

It is enough to show that isomorphism 7 preserves
labels of vertices.

Let a and b be labels of jth vertices on level [
of corresponding trees T'|, and Ty,. Suppose that
a #b. Then

l l
Gu - Hsik #gw Hs’ik'
k=1 k=1

Hence, g, # gw- This leads to a contradiction with
the equality of labels of v and w.

The proof is complete.

Denote by Pathy(v,w) the shortest path from
vertex v to vertex w in 7.
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Lemma 7. Let an element a € G decomposes as

l _
a = ][] si, in S. If there exists t € 1,1 such that
k=1

t
the element [] s;, appears as a label of a vertex
k=1
of T on level less then t then |a|s < L.
¢

Proof. Denote by b the product [] s;,. Then

k=1
the vertex v € V, which is defined by the path

i1,149,...,1; starting from the root, will have la-
bel b. Note that the element a decomposes as a

product H s;,, if and only if the path iy,d9,---4;

connects the root of T,, with the vertex labeled by
gv - Q.

The assumption of the lemma implies that
there exists a vertex w € V such that w is up-
per than v in T and w is also labeled by b. Since
labelled trees T'|,, and T'|,, are isomorphic the ver-
tices, which are defined by the path i;41,...,%
from the root in trees T, and Ty, have the same
label a. From Lemma 4 it follows that

I !
a=]ls0=" 11 I s =
k=1

kePathr(e,v) k=t+1

l
H Sk - H Sip -
k€Pathr(e,w) k=t+1
Since w is upper than v, the length of the path
Pathr(e,w) is less than t. This leads to the in-
equality |a|s < I.

The proof is complete.

Fast down search algorithm. In order to
optimise the simple down search algorithm we use
the results of the previous section. The main goal
is to reduce the number of multiplications.

Algorithm 2: Fast down search algo-
rithm
Input: G — a group, S — its system of
generators
Result: Diameter Dg(G)
Initialization: found = {e},
all = {g|lg € G}, current_level =
level = 0;
while found # all do
current _level =
= (current_level - S)\ found,

{e},

found = found | current_level;
level = level + 1;

end

Output: level

Theorem 8. Fast down search algorithm is cor-
rect.
Proof. We need to show that:

1. the algorithm has no dead loops;

2. the output of the algorithm is the diameter
Ds(G).

These two parts will be proved separately.

Part 1. There are no dead loops if and only if
there exists a natural number n such that the algo-
rithm will find all elements of group G (set found)
at the moment level = n.

Suppose that there exists an element a € G
which never appears in the set found. Consider a

l

decomposition [] s;, of a over S. Since a is not
k=1
contained in found, there exists ¢t € 1,1 such that

¢

the element b = H s;, appeared on an earlier it-
=1

eration of the algorlthm This means that there

exists a shorter decomposition of b over S. From
Lemma 4 it follows that the element b is a label of
a vertex on the level which is upper then level .
Lemma 7 implies the inequality |a|s < k. Hence,
for every decomposition of a a shorter decompo-
sition can be found. This immediately leads to a
contradiction for the set of all lengths of decompo-
sitions of a over S is bounded from below.

Part 2. Let d; be the output of the simple
down search algorithm with input G and S and let
ds be the output of the fast down search algorithm.
Note that directly from these definitions we have
the inequality

di; < ds.

Suppose, that d; < dy. Then there exists an ele-
ment of the group G such that it firstly appeared
strongly after the d;th step of the fast down search
algorithm. Otherwise, first down search algorithm
stops at the moment d;.

Let the element a € G be such that:
1. a firstly appeared at the moment level = ds in
the fast down search algorithm;
2. a firstly appeared at the moment [evel
in the simple down search algorithm.
The second condition leads to the equality |a|s =
= ds — r. Proposition 5 implies that there exists a
path 41,42, ...,%4,—r, which connects the root with
the vertex labeled by a. Based on the fast diam-
eter search algorithm, there exists a natural num-

:dQ—’I"

t
ber ¢, t < dg —r, such that the element b = [] s;,
k=1
appears earlier then level = (dy — r). Lemma 7
implies that |a|s < d2 —r. A contradiction.

The proof is complete.

The main optimization of the fast down search
algorithm compared to the simple down search al-
gorithm is to skip previously founded elements of
a group. The number of repetitions of elements
depends on a group and its system of generators.
Therefore, in general the number of multiplication,
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which are required for the fast down search algo-
rithm, can be estimated only as in Proposition 3
by % However, in some cases this number
can be reduced significantly.

Middle down search algorithm

In this section we present an algorithm that re-
quires additional properties of generators.

Strictly growing system of generators.

An element a € G will be called properly gener-
ated over S if element for arbitrary A C S, A # S
we have a € (A).

This definition immediately leads to the follow-
ing statements.
Lemma 9. Every decomposition of a properly gen-
erated element contains every generator of S.

Proof. Since every element belongs to the sub-
group generated by the elements that appeared in
its decomposition the statement follows.
Lemma 10. The minimum possible length of a
properly generated element over S is |S]|.

Proof. Immediately follows from Lemma 9.

A system of generators S of a group G will be

called strictly growing if every diameter element a
from G is properly generated.
Lemma 11. Let G be a finite group, S be its
strictly growing system of generators. Then the
diameter of the group G over S is greater or equal
to |S].

Proof. By Lemma 10 every diameter element has
length over S greater or equal to |S|. This means
that the diameter of G over S is not less than |S|.

The proof is complete.

M:ziddle down search algorithm. Let G be
a finite group, S be its strictly growing system of
generators.

We introduce the following notions:

1. G5 — the set of all properly generated elements
of the group G;

2. D¢(S,m) — the set of all decompositions over
S with length m such that every generator of S
appears at least once in every decomposition, m >

> |S];

3. P — the function on the set of decompositions,
which converts a decomposition to the correspond-
ing element.

Let a be an element of G with a decomposition in
D¢(S,m). Note, that in general it does not imply
that a is properly generated.

Algorithm 3: Middle down search algo-
rithm
Input: G — a group, S — its strictly
growing system of generators
Result: Diameter Dg(G)
Initialization: found =0, all = Gy,
level = |S| —1;
while found # all do
level = level + 1;
for decomp € D¢(S, level) do
product = P(decomp);
if product € Gy then
‘ found = found|J{product};
end

end
end
Output: level

Theorem 12. Middle down search algorithm is
correct.

Proof. Since the system of generators S is strictly
growing every diameter element is properly gener-
ated. Then the set of all diameter elements is a
subset of Gy. This means that the diameter can
be found as the lengths over S of elements from
G are found. More precisely, the diameter is the
maximum of these lengths:

D = lg.
s(G) gggﬁlﬂs

Hence, the main loop of the algorithm terminates
after finite number of steps, i.e. after Ds(G)—|S|+
+ 1 steps.

Lemma 9 implies that for every properly gener-
ated element a minimum decomposition belongs to
D¢(S, level) for some natural number level. From
Lemma 10 it follows that level is not less than
|S]- This explains why the main loop starts from
level = |S|.

The proof is complete.

Proposition 13. Let G be a finite group gener-
ated by a strictly growing system of generators S,
|S| =n and Dg(G) = m for some n,m € N. Then
the number of multiplications required by the mid-
dle down search algorithm is bounded from above

by

S—1)- (1) WREECE

t=n k=0

Proof. Since the system of generators S is strictly
growing the inequality m > n holds. Hence, we
need to obtain a product of every sequence of gen-
erators of lengths from n to m. Moreover, every
such sequence must contain every generator from S
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at least once. The total number of decompositions
on the tth step equals

n—1 n
PCOLE ( ) (n— k).
k
k=0
Therefore, on the tth iteration of the algorithm the
number of multiplications is not greater than

n—1
=1 0 ()
k=0
Hence, the total number of all multiplications from

the nth to the mth step can be estimated from
above as

m n—1

>-1)- -1t (7)o by

t=n k=0

The proof is complete.
Homogeneous theory

In this section we consider series of groups with
its systems of generators. We put additional con-
ditions on them and obtain some useful properties.
Then it gives us a possibility to introduce new al-
gorithms.

Inductive limits of groups. Recall the no-
tion of inductive limit of groups. Let (I,<) be a
directed set, {G(i)|i € I} be a family of indexed
groups. Assume that there exist homomorphisms
hij: G(i) = G(j), 4,5 € I, i < j, such that
1. h;; = id over G(3) for every i € I,

2. hip =hijoh;y forevery i,j,kel,i<j<k.

For indices i,j € I and elements = € G(i), y €
€ G(j) we write x ~ y if there exists k € I such
that

hig(@) = hjx(z).
Then ~ is an equivalence relation on the disjoint
union of given groups that admits to define multi-
plication of equivalence classes induced by multi-
plication rules in given groups.
Definition 4. The inductive limit of the system
(G(i),hij), 1,7 € I is the group defined as

li_rr)lG(i):UG(i)/N.

i€l

Homogeneous system of generators. Let
G(1) < G(2)<...<G(n)<...,néeNbe an as-
cending group series. Let i, 7 be natural numbers,
i < j. We define the homomorphism h; ; from G(i)
to G(j) as the embedding mapping between these
groups, i.e.

hij(g9) =g, 9 € G(i).

Then the inductive limit of the system (G(3), hi ;),
1,7 € N is well-defined.

Definition 5. A groups-generators series G is the
sequence of pairs (G(n), SoG(n)|n € N) such that:
1. G(1) < G(2) < ... < G(n) < ... is an ascend-
ing group series;

2. SoG(n) is a system of generators of G(n) and

SoG(n) C SoG(n+1),n € N.

Let G be a groups-generators series.

Denote by IL(G) the inductive limit of the sys-
tem (G(7), hi;), i, j € Nwith embedding mappings
hi ;.

Denote by GDiff(n) the set of generators,
which appear exactly on the nth, n > 1, i.e.

1. GDiff(1) = SoG(1),

2. GDif f(n) = SoG(n)\SoG(n —1), n > 2.
Definition 6. The groups-generators series G is
called uniform if:

t
(U @piffin) = G,
k=1
for every index tuple I = (i;,42,--- ,i;) of cardi-

nality .

Let C be a natural number.
Definition 7. The groups-generators series G is
called C-stable if:

|GDiff(t)] =Ct = 1.

Let the groups-generators series G be C-stable.

Suppose that elements from |J SoG(n) are enu-
n>1
merated

| SoG(n) = {s; € Gli € N}

n>1

and the following conditions hold:
1. SoG(n) = {51, 82, ..+, 8C, SC+1,--s8n-ct, N > 1
2. GDfo(?’l) = {s(nfl)-CJrlv S(n—1)-C+25- -+ 3n~C}a
n>1.

Let I =

(41,42, ,i¢) be an index tu-

ple. Define the mapping A from 1,#-C to
t
U (ix — 1) - C 4+ 1,ix - C by the rule:
k=1

h{ (z) = (if@=1)/c1+1 — 1) - C + (x —1)mod C + 1

Note that the unique representation of x =
=(k-1)-C+r, kelmn,relC leads to the
equality

W ((k—=1)-CH+r)=(ir—1)-C+r. (1)

The last equality can be reinterpreted as follows:
if z is the index of the rth generator of GDif f(k),
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then h§(z) is the index of the rth generator of
GDiff(ir).

Now define a mapping

Y : SoG(n) — | J GDiff(ix)

k=1

by the rule:

¢IC(3i) = Sh¥(i)-
We will use not;}ltions
1. SoGr(n) = |J GDif f(ig);

1

k—
2. Gi(n) = (SoGr(n)).

Note that SoGr(n) is the image of SoG(n) under
Py

Definition 8. A uniform and C-stable groups-
generators series G is called homogeneous if for ev-
ery natural ¢t and every index tuple I of cardinality
t the mapping 1/)IC can be extended to the group
isomorphism between G(t) and Gy(t).

We will omit the letter C' in notations ¢, h¢.
We will use notations vy, h; instead, unless other-
wise stated in this paper.

Homogeneous equivalence. Let G be a ho-
mogeneous groups-generators series. We define a
binary relation ~ on IL(G).

Definition 9. Let a,b be elements from IL(G).
We write a ~ b if there exist index tuples I, J of
the same cardinality n such that:

1. a € Gr(n);

2. be Gy(n);

3. (’1/11_1 OQZ}J)(G) =b.

Lemma 14. The binary relation 2 s an equiva-
lency.

Proof. Reflexivity. Let a be an element from
IL(G). The definition of the inductive limit im-
plies the existing of natural n such that a € G(n).
Then for the index tuple I = (1,2,...,n):

a € Gr(n) =G(n) and ((v7) 'otor)(a) = id(a) = a.

Symmetricity. Let a, b be elements from IL(G)

and @ ~ b. Then there exist index tuples I, J of
the same cardinality n:

a€Gr(n),beGy(n) and (1) " otps)(a) = b.
From the definition of ~ we obtain

a=((¥r)" o)1 (b)
Then the equality

(1)~ othy) L) = ()" o vr)(b),

implies the equality
(W)~ owr)(b) = a.

Transitivity. Let a,b,c € IL(G) be such that a 2

and b % ¢. From the definition of ~ it follows that
there exist index tuples I, J; of cardinality n; such
that

a € Gr(m),be Gy, (), (Y1)~ otby,)(a) =0,
(2)
and also exist index tuples Jo, K of cardinality ns
such that

be GJz(nQ)’C € GK(n2)7 ((quh)_l o 1/’?()(17) =c
(3)
Denote by m the cardinality |J; [ J2|. Let
A= (maxi+1,...,maxi+ ng —m),
iel iel
B = (maxk+1,...,maxk +mn; —m)
kek kekK

and define the following index tuples:
I=TUA,

Ji=JiU(J2\Jh),
K=KLUB,

Jy = Jo U (J1\J2).
Denote by N the sum n; 41y —m. Then |I| =
|J1| = [K| = |J2] = N.
Denote by g; the element (¢0;)”'(a). Then
g1 € G(ny). Equality (2) implies that g1 =
= (¢4,) ' (b). Since T = I A the inclusion

SoGt D SoG(G) holds. It implies that G3(N) >
> G1(ny). Hence, we obtain

(7)) = (1) (@) = gn. (4)

Similarly, from the equality J; = J; UB we obtain:
(W7) 7 (0) = (W) "' (0) = g1 (5)

Denote by g, the element ()" (c). Equation (3)
implies that go € G(ng). Similar to the previous
case one can show that

L () () = (1s,) " (b) = g,
2. (V) '(c) = (¥r) () = ga.

Since index tuples J; and J> contains the same
numbers, we have the equality G5—(N) = G7(N).
Then the mapping

(W9~ oy G7(N) = G(N)
maps a to b and the mapping
(1/)3)*1 o g : Gz(N) = Gx(N)

maps b to c.
It follows that the composition

() oo (¥;) ot : G7(N) — Gg(N) (6)
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maps a to c.
We are left to show that the composition (6)
can be re-combined so that it is a product of two

isomorphisms, according to the definition of 2Tt

is enough to show that there exists an index tuple
I of cardinality IV such that:

(W)™ = W) oty (Uy)

Assume that I = (iy,...,iy). Note that J; = Ja.
Hence, there exists a permutation 7: 1, N — 1, N
such that:

L Ji = (Jrys -0 dm(n))s

2. J2 = (.71;7]]\7)

Let s be arbitrary generator from SoG(N). Then
its index is t = (k — 1) - C' + r for some k € 1, N,
r € 1,C. Then from (1) we obtain

hTQ(t):(]kfl)C+r:(‘7ﬂ'(t)71)C+T.7

(hT1>_1((J7r(t) — 1) . C+T) = (t — 1) . C+T,
(hy) M t-1)-C+r)=(ir—1)-C+r,

where ¢t — position of j; in J5, which is mapped to
jr by 7. Define the index tuple I' := (ig|m(t) =
=k,k >1). Then

vy (s) = (V) © (7)™ 0 p)(s)-

From the definition of ~ we obtain (Yt o

Vg)(a) =c.
The proof is complete.
Definition 10. Elements a,b € IL(G) are called

homogeneously equivalent if a 2 b,

Definition 11. The homogeneous class of an ele-
ment a € IL(G) is the subset of all elements from
IL(G), which are homogeneously equivalent to a:

HC(a) = {b € IL(G)|a ~ b}.

Properties of a homogeneous class.
Lemma 15. The set {e} is the (trivial) homoge-
neous class of e.

Proof. Let a € G(n) for some natural n. Suppose
that a € HC(e),a # e. From the definition of the

. . H .
homogeneous equivalence we obtain e ~ a. This
means that there exist index tuples I, J of cardi-
nallity n such that:

(7' o g)(e) = a.

Note that ¥y, are group isomorphisms. Hence,
1/)1‘1 oy is a group isomorphism as well. It means
that

(wfl o 1/1])(6) =€,

which leads to a contradiction with ineaquality a #

#e.

The proof is complete.

Lemma 16. Let a € Gy(n), b € G (n) and a )
for some index tuples I, J of cardinality n. Then

lalsoc;(n) = |blsoc; (n)-

Proof. Denote by [ the length [b|soq,(n). Suppose
that
‘a|SOG1(n) > [.

Then there exist generators s;,sj,,...

!
€ SoG j(n) such that b= [] sj,.
k=1

S5, €

Since the groups-generators series G is homo-
geneous the decomposition

1 1
H(Wl or)(sj,) = H S(htohn) (k) — @
k=1 k=1

is a decomposition of the element a over SoGy(n).
Hence, |a|soc(n) < I. A contradiction.

Similarly the assumption |a|soq,n) < ! leads
to a contradiction.

The proof is complete.

Lemma 16 gives rise to the following definition.
Let HC be a homogeneous class such that its
intersection with G is non-trivial.
Definition 12. A length of the homogeneous class
HC over S is defined as:

|HC|s = |als,
where a is an element from HC'[)G.

Lemma 17. Let a,b € G(n), a 2 b for some nat-

uwral n. Then there exists an automorphism 1 of
G(n) such that:

whose restriction on SoG(n) is a permutation.

Proof. From a 2 b it follows that for some index
tuples I,J the mapping ¢ = (7)o, is an
automorphism of G(n) such that

(a) =b.

From the definition of mappings ¥y, v, it fol-
lows that the composition ¢ is a permutation on
SoG(n).

Lemma 18. Let HC be a homogeneous class and
a be a properly generated element from HC (G (n)
over SoG(n) for some natural n. Then every el-
ement of HC(\G(n) is properly generated over
SoG(n).
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Proof. Let b be an element from HC () G(n).
Suppose that b is not properly generated over
SoG(n).  Then there exists a decomposition
D = (si,...,8;) of b over SoG(n) such that
SoG(n)\D # ) as sets. Note that a, b belong to the
same group G(n). Since b € HC we have b L a.

Then from Lemma 17 for b,a implies that there
exists an automorphism of G(n) such that

() = a.

The homogeneous property of groups-
generators series G implies that (D) =
= (¥(84),.--,%(s5,)) is a decomposition of the

element a over SoG(n). Moreover, the restric-
tion of ¥ on SoG(n) is a permutation. Hence,
SoG(n)\¢(D) # 0 as sets. It means, that the
element a is not properly generated over SoG(n).
A contradiction.

The proof is complete.

Proposition 19. Let HC be a homogeneous class
and a € HC(\G(n) for some natural n. If a is a
diameter element of G(n), then every element of
HC (N G(n) is a diameter element of G(n).

Proof. Directly implies from the previous lemma.

Homogeneous down search algorithm

Let G be a homogeneous groups-generators se-
ries, n be a natural number. Assume that G =
= G(n), S = SoG(n).

Let HC be a homogeneous class such that
HCNG # 0. Fix an element hc € HC(G. We
define the product

HC«+S={HC(hc-s)|s €S}, (7

Lemma 20. The product (7) of the homogeneous
class HC and the system of generators S is well
defined.

Proof. Let hcy,hce be different elements from
HC(G. Lemma 17 for hcy, hey states that there
exists an automorphism 1 of G such that:

"Ll)(hcl) = hCQ.
Since elements from the same group both index
tuples I and J consist of numbers {1,2,...,n}.

Therefore, there exists a permutation 7 : [ - C —
J - C such that:

U(si) = 5703

for every i € 1,n - C'. Note that n - C = |S5|.
Let 4,5 € 1,|S| be indices of generators in S,
7(i) = j. Then

hey - 55 = hey - 87y = Y(her) - (si) = w(her - s5).

The definition of homogeneous equivalence implies
that heg - s; € HC(hey - s;). Hence, for every gen-
erator s; € S there exists unique s; € S such that

hea - s; € HC(hey - s5).

The definition of homogeneous equivalent now im-
plies the equality

HC(hcy - s5) = HC(hey - s5).
Then moving through all generators of S we have:
{HC(hcs - s)|s € S} = {HC(hcy - s)|s € S}.
The proof is complete.

The following down search algorithm is based
on homogeneous classes.

Algorithm 4: Homogeneous down search
algorithm

Input: G — a group, S — its system of
generators
Result: Diameter Dg(G)
Initialization: found = {HC(e)},
all = {HC(g)lg € G},
current_level = {HC(e)}, level = 0;
while found # all do
previous_level, current level =
current _level, {};

for HC' € previous level do
current _level =

= current_level | JHC * S,

end
current _level =

= current_level\ found;

found = found|J current _level;
level = level + 1;
end
Output: level

Lemma 21. Let a € G, |a|s = I. Then [ is the
number of iterations of the main loop of homoge-
neous down search algorithm required to obtain the
homogeneous class HC(a).
Proof. Induction on .

The basis: case [ = 1. Note that on the initial-
ization phase of the algorithm we have equalities

current_level = found = {HC(e)}.

Hence, when level = 1 and CL = current_level
the following set of homogeneous classes will ap-
pear:

( |J HCx8)\ found =

HCeCL
= (HC(e) x 8) \ {HC(e)} =
={HC(e-s)|s € S} \ {HC(e)} = {HC(s)|s € S}.
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Let |a|g = 1. Then there exists i € 1,[S]|
such that a = s;. From previous equalities for
current_level it follows that the class HC'(s;) will
appear on the first iteration of the main loop.

From the other hand, let HC(a) appears on the
first iteration of the main loop. Then, from pre-
vious equalities for current level it follows that
there exists s € S such that HC(s) appears as a
product e - s on the first step of the main loop and
equality HC(s) = HC(a) holds.

Lemma 17 implies that there exists an auto-
morphism v of G such that:

P(s) = a.

Note that by the same Lemma, ¢ is a permuta-
tion on S. Then there exists j € 1,|S]| such that
(s) = s; = a. Hence, |als = |s;|s = 1.

Inductive step: case l+1 under assumption that
for 1 the statement holds.

Let |a|ls = 1 + 1. Then there exist
i1,12,...,4+1 € 1,|S| such that:

+1

a = H Sip -
k=1

!
Then the element b = [] s;, has length . Oth-

erwise, the length of akover S is less than [ + 1.
Then, by inductive assumption, HC'(b) appears on
the [th step of the algorithm. Lemma 21 implies
that HC(a) = HC(b-s;,,,). Then HC(a) appears
on the (I + 1)th iteration of the algorithm. Other-
wise, the element a appears on the same previous
level. It leads to a contradiction with inductive
assumption.

Let HC(a) appears on the (I + 1)th step of the
algorithm. Then for some b € G and s € § we
have the equality

HC(a) = HC(b- s).
The inductive assumption implies |b|g = I. The
!

last equality leads to equality b-s = (] s;,,)- s for
k=1
some s;, € S. This decomposition is minimal for

b-s. Otherwise, HC(b-s) = HC(a) appears earlier
than on (I 4 1)th level. Therefore |a|s = |[HC|s =
=1+1

The proof is complete.

Corollary 22. Let HC be a homogeneous class
and HC' appears on the lth step of homogeneous
down search algorithm for G and S. Then |el|s =
=1 for every el € HC(G.

Proof. Let a € HC' () G. Lemma 21 implies that if
HC appears on the [th step of the algorithm then
|a|5 =1.

The proof is complete.

Theorem 23. Homogeneous down search algo-
rithm s correct.

Proof. The algorithm terminates if and only if
found = all. This equality holds if and only if
every homogeneous class with non-trivial intersec-
tion with G appears at least once. This statement
follows from Lemma 21 and existence of the mini-
mum decomposition for every element.

Moreover, the last level of the algorithm con-
tains homogeneous classes of elements of GG, which
have the maximum length over S. It means that if
algorithm stops on step [, then from Corollary 22
it follows

|el|5 == Ds(G)

for every HC' € lastjevel and every el € HC () G.

The proof is complete.

Homogeneous middle down search
algorithm

Let G be a homogeneous groups-generators se-
ries, n be a natural number. Assume that G =
= G(n), S = SoG(n).

Let HC be a homogeneous class with nontrivial
intersection with G. Recall that

HC-S={HC(hc-s)|s € S},

where hc is a fixed element from the intersection
HCNG.

We will use the following notations:

1. Gy, is the set of all properly generated homo-
geneous classes of the group G over S.

2. Dy (S, m) is the set of all decompositions over
S of length m such that the following property
holds:

if some element of a homogeneous class has a de-
composition of length m then Dy, (S, m) contains
at least one decomposition of length m of some
element of this homogeneous class, i.e

if D € Df(S,m), P(D) € HC then

there exists DH € Dy (S, m)

such that P(DH) € HC.
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Algorithm 5: Homogeneous middle

down search algorithm

Input: G — a group, S — its strictly
growing system of generators
Result: Diameter Dg(G)
Initialization: found =0, all = Gy,
level = |S| —1;
while found # all do
level = level + 1;
for decomp € Dy, (S, level) do
product = HC(P(decomp));
if product € Gy, then
‘ found = found | product;
end

end
end
Output: level

Theorem 24. The homogeneous middle down
search algorithm is correct.
Proof. Let m be the iteration of homogeneous mid-
dle down search algorithm when found = all. Let
Dgs(G) =1 for some natural /.

Suppose that a € G is a diameter element of G.
Then strictly growing property implies that the el-
ement a is properly generated. Lemma 10 implies

that the length of a over S is not less than |S|.
It follows that the minimum decomposition of the
element a belongs to D¢ (S, ). Homogeneous prop-
erty implies that Dy, (S,1) contains a decomposi-
tion defining a product homogeneously equivalent
to a. And this decomposition has the same length
l. Therefore, we have the inequality

m > 1.

Let HC be a homogeneous class. Suppose that
HC is found on step greater than [. It follows
that there is no decomposition of HC with length
from |S]| to I. Lemma 16 implies that there is no
decomposition of any element from HC (G with
length from |S| to I. But the diameter element of
G has length . It means that there exists a de-
composition of an element from HC' ()G of length
stricktly less than |S|. From Lemma 10 it follows
that every element of HC'(| G is not properly gen-
erated. Hence, HC is not in G,. We obtain the
inequality
m <.

Therefore, we have the equality m = [.
The proof is complete.
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AJITOPUTMMU IIOIIVKY AITAMETPA OPIEHTOBAHUX
I'PA®IB KEJII

Poseasnymo dobpe eidomy 3adauy nowyry diamempa ckinwernnoi epynu. Bona dopmyaroemoces maxk:
aHatmu Hatbirbwul ceped diamempie epynu 6i0HocHo ii cucmem meipHux. liamempom epynu € dia-
memp epaga Keni, wo 6ydyemuea Ha ochosi epynu ma ii cucmemu meiphus. Y uit pobomi po3essnymo
nidzadaywy 3adaywi nowyky diamempa epynu, a came, 360a4%Y 3HALOOHCEHHA diaMempa 2pynu 6idHOCHO
3adanoi cucmemu meiprur. Iloxasano, wo us 3adana NOAIHOMIGABHO 3600UMbBCA 00 3a0a4i NOWYKY
MIHIMANOHUL PO3KAGDIE EAEMEHMIE,

Zlas po3e’azanus 3a0daui 3HATO0HCERHA diaMempPa 2pYny 6i0HOCHO 3a0aGHOT CUCTNEMU MEIPHUT 3aNPO-
NOHOBAHO AN ANZOPUMMIE: TPOCTNUT AA20PUMM TOWYKY 6HU3, WEUIKUT aA20PUMM NOWYKY 6HUS,
cepeduHHUTL AA20PUMM NOWYKY 6HUS, 00HOPIOHUT AAZ0PUMM NOWYKY 6HU3 Ma 00HOPIdHUl cepedunHul
aA20PUMM NOWYKY BHU3.

IHepwi dea anrzopummu € YHIBEPCANDHUMUY, G IHWE BUMAZAIOMb GUKOHAHHA 000AMKOBUT YMOE A



M. Olshevskyi. Diameter search algorithms. .. 19

CUCMeMU MEIPHUL.

s anzopummy cepedunmozo cnycky 66e0eHo NOHAMMA CMPO20 3POCMAION0I cucmemu meipruz. 3a
BUKOHAHHA UIET YMOBU, MOWYK MIHIMAAOHUT PO3KAGIIE NOMEHUITHUT HATUIOBWUT PO3KAGIIE MONACHG
nowamu 00pasy oHc i3 NeeHoi MHONCUHU.

Bsedero oxpemy meopiro 0dnopidnocmi. B witli poseasadanymo padu epyn ma i cucmem MeIPHUL, UL0
3000604bHAOMD NEesHum dodamrosum ymosam. Beederno eaacmusicms odnopidnocmi maxux padie ma
BI0HOWEHHSA EKBI8ANEHMHOCTI iT esemenmis. OCHOBHOW Memoto 86edeHts MaKkozo 6i0HOUEHHA € 30e-
peoicents po3kaadie ii esemenmise 6 odnomy kaaci. Ils eaacmusicms dae moxcausicms 06paro6yeamu
MIHIMAALHUT PO3KAGD AuWe OAA NPEICTNABHUKA KAGCY EKEI6AAEHMHOCITL.

s anzopummie 00HoPIOH020 NOWYKY 6HU3 MG 00HOPIOH020 CEPEJUHHO20 NOWYKY 6HU3 HEOOTIOHOM
YMOBOI0 3ACMOCYBAHHA € HANCHCHICTD 2PYNU 00 00HOPIOH020 2eHepamueHo20 pady 2pyn. Todi zadavua
BHALOOHCEHHA MIHIMANDHUT PO3KAGDIE ENEMEHMIE 3600UMBCA 00 3HATOOHCEHHA MIHIMAALHUL DO3KA-
di6 npedcmasHuKI6 KAGCI6 EK6I8aNeHUTT.

Tloxaszano, w0 6Ci ONUCAHE AAZOPUMMUY € KOPEKMHUMY. 3POOAEHO OUIHKU CKAGIHOCTI i POOOMU.

KurtouoBi ciaoBa: rpad Kesi, giamerp rpynu, cucrema TBipHUX.
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