VK 519.21

G. Solomanchuk, N. Shchestyuk
DOT: https://doi.org/10.18523/2617-70804202128-33

RISK MODELLING APPROACHES FOR STUDENT-LIKE
MODELS WITH FRACTAL ACTIVITY TIME

The paper focuses on value at risk (VQR) measuring for Student-like models of markets with fractal
activity time (FAT). The fractal activity time models were introduced by Heyde to try to encompass the
empirically found characteristics of real data and elaborated on for Variance Gamma, normal inverse
Gaussian and skewed Student distributions. But problem of evaluating an value at risk for this model
was not researched. It is worth to mention that if we use normal or symmetric Student‘s models than
VQR can be computed using standard statistical packages. For calculating VQR for Student-like models
we need Monte Carlo method and the iterative scheme for simulating N scenarios of stock prices. We
model stock prices as a diffusion processes with the fractal activity time and for modeling increments
of fractal activity time we use another diffusion process, which has a given marginal inverse gamma
distribution.

The aim of the paper is to perform and compare VQR Monte Carlo approach and Markowitz approach
for Student-like models in terms of portfolio risk. For this purpose we propose procedure of calculating
V@R for two types of investor portfolios. The first one is uniform portfolio, where d assets are equally
distributed. The second is optimal Markowitz portfolio, for which variance of return is the smallest out
of all other portfolios with the same mean return.

The programmed model which was built using R-statistics can be used as to the simulations for any
asset and for construct optimal portfolios for any given amount of assets and then can be used for
understanding how this optimal portfolio behaves compared to other portfolios for Student-like models of
markets with fractal activity time.

Also we present numerical results for evaluating VQR for both types of investor portfolio. We show
that optimal Markovitz portfolio demonstrates in the most of cases the smallest possible Value at Risk
comparing with other portfolios. Thus, for making investor decisions under uncertainty we recommend

to apply portfolio optimization and value at risk approach jointly.
Keywords: Value at Risk, Student distribution, Monte-Carlo method, Fractal Activity Time model,

Optimal portfolio.

Introduction

Making decisions under uncertainty is a com-
plex and important problem, which one can face
in different spheres, particularly in the area of in-
vestments, where participants strive to gain the
desired level of income and protect themselves
against losses. For the control of potential losses
was proposed the using of the value at risk (VQR)
monetary risk measure by the regulations Basel I
and Basel II.

For a given portfolio, time horizon T'; and prob-
ability p, the VQR of level p can be defined infor-
mally as the maximum possible loss during that
time after we exclude all worse outcomes whose
combined probability is at most p. More formally,
V@R is defined such that the probability of a loss
greater than V@R is (at most) p while the prob-
ability of a loss less than VQR is (at least) 1 — p.
Common parameters for standard VQR are 1%
and 5% probabilities and one day and two-week
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horizons, although other combinations are in use.

V@QR can be estimated either parametri-
cally (for example, variance-covariance VQR in
Markowitz) or nonparametrically (for examples,
historical simulation V@QR or root-finding algo-
ritms V@R in Ivanov). A McKinsey report pub-
lished in May 2012 estimated that 85% of large
banks were using historical simulation. The other
15% used Monte Carlo methods. For the using of
Monte Carlo method we need to make some as-
sumptions about models which we choose for the
risky factors.

The paper focuses on value at risk measuring
for Student-like models of markets with fractal ac-
tivity time. The fractal activity time model was
introduced by Heyde (1999) to try to encompass
the empirically found characteristics of real data
and elaborated on for Variance Gamma, normal
inverse Gaussian and skewed Student distributions
[1; 2; 8]. If we use normal or symmetric Student‘s
models than V@QR can be computed using stan-
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dard statistical packages. For calculating VQR
for model proposed in [2; 8] we need Monte Carlo
method and the iterative scheme for simulating NV
scenarios of stock prices.

In this paper we consider the simulations for
each asset and for some investor portfolios built out
of them: uniform portfolio as the one where N as-
sets are equally distributed and optimal Markowitz
portfolio as the one, variance of which return is the
smallest out of all other portfolios with the same
mean return. Notice, that comparison of VQR
and Markowitz efficient frontier approaches were
discussed in [3], where for applying Monte Carlo
method was chosen GBM.

The paper is organized as follows. In Section
2 we remain formal definition of probability func-
tional V@R for risk measuring and consider the
main steps in a basic Monte Carlo approach to
V@R estimating.

In Section 3 we discuss the assumptions about
market data, which are necessary for performing
of first step of Monte Carlo method. For this aim
we describe time-changed processes for Student-
like models with depends. This section is based
on the papers [2], [8], [9], [10], [11] where models
of the generalized diffusion process with "market”
time are presented and discussed.

In Section 4 we use the iterative scheme for sim-
ulating IV scenarios of stock prices for our model,
which was proposed in [6]. We model market time
increments as a diffusion processes with a given
marginal inverse gamma distribution.

In Section 5 we propose procedure of calculat-
ing VQR for different types of investor portfolio.

In Section 6 we present numerical results for
evaluating V@R for both types of investor portfo-
lio.

Monte-Carlo Method for evaluating Value
at Risk

Let S is a vector of risk factors, At is VQR
horizon (one day or two weeks), AS is a change
of risk factors over At, Y is a loss in portfolio
value resulting from change AS over At The loss
Y is the difference between the current value of the
portfolio and the portfolio value at the end of the
V@R horizon At if the risk factors move from S
to S+AS.

Reducing the variance of random variable (re-
turn on asset/portfolio) leads to minimization of
losses, however, it also leads to minimization of
income. Therefore we need to introduce such a
metric, which would encounter only bad effects of
risks, and which will not encounter the positive
properties of risks (e.g unexpected income).

Probability functionals have been objects of

many theoretical and empirical investigations of
risk measuring. For background on probability
(risk) functionals see Pflug [5] (2005), for instance.
For a seminal work on axiomatic definitions for risk
functionals see Artzner et al (1999).

Let us recall the definition of probability (risk)
functional V@R of level a.

Let (2, F, P) be the probability space and sup-
pose for p € [1,400) a linear space L(p) of real
valued random variables

Y:Q— R!

such that E(]Y|?) < oo is defined on it.
De finition. The value-at-risk of level

a,0<a<l1

for random variable Y € L(p) is a probability func-
tional, defined as a-quantile of the profit (loss)
function

VAQRL(Y) =G a)=inf{ ye R: G(Y) > a},

(1
where G is the distribution function of Y € L(p),
G~ is the quantile function of o, 0 < o < 1.

In general, even though the distribution func-
tion G may fail to possess a left or right inverse,
the quantile function G~! behaves as an "almost
sure left inverse" for the distribution function, in
the sense that

GTHG(Y) =Y (2)

almost surely.

Often it is recommended (for examples by reg-
ulators Basel I and Basel II) to denote V@R as the
low quantile with minus sign [7]:

VAR, (Y)=~-G!(a) (3)

For evaluating VQR there are some meth-
ods. V@R can be estimated either parametri-
cally (for example, variance-covariance VQR) or
nonparametrically (for examples, historical simu-
lation V@R or resampled VQR). A McKinsey re-
port published in May 2012 estimated that 85%
of large banks were using historical simulation and
the other 15% used Monte Carlo methods. The
main steps in a basic Monte Carlo approach to es-
timating loss probabilities are as follows:

1. Generate N scenarios by sampling changes
in risk factors AS(1),..., AS(N) over horizon At.

2. Revalue portfolio at end of horizon At in
scenarios

S+ AS(1), ..., S + AS(N);

determine losses Y'(1),..,Y(N) by subtracting
revaluation in each scenario from current portfo-
lio value; build the empirical distribution function

G(Y).
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3. Find a quantile (3) of given probability «.

The first step requires some assumptions about
market data. These assumptions are being consid-
ered in the next section.

Student-like models with fractal activity
time

Let us consider the market, which consists of
a rigsk- free bond with price B; and risky stocks
with price S;. Price of the bond evolves according
to formula for continuous rates. The price of the
underlying traded asset S; is a strong solution of
the following stochastic differential equation [2]:

dS; = pSdt + (0 + 02 /2)SdT; + 0S;dWr,, t > 0,
(4)
where T;, ¢ > 0, is a random time change
or fractal activity time, that is positive non-
decreasing process such that 7y = 0, and Wy, ¢t > 0,
is a standard Brownian motion independent of the
process T;. The meaning of the coefficients before
dt, dT, and dW¢, you can find in [11]. This model
differs from the previous one in that the Brown-
ian motion does not depend on the usual calendar
time, but on some random process T3, otherwise,
from market time. Market time is a positive non-
descending stochastic process with stationary in-
crease that are subordinated to the gamma-inverse
distribution. The idea of using "market" time is in-
tuitively correct, because the change in stock prices
occurs randomly, rather than at certain points in
time.

The fractal activity time model was introduced
by Heyde (1999) to try to encompass the empiri-
cally found characteristics of real data and elab-
orated on for Variance Gamma, normal inverse
Gaussian and skewed Student distributions [1; 2].
In paper [2; 8], we considered two constructions of
activity time. The first construction is based on re-
ciprocal gamma diffusion type processes and leads
to stationary returns with exact Student marginal
distribution. The second construction uses a su-
perposition of two reciprocal gamma diffusion type
processes and leads to Student-like marginal distri-
bution.

The increments over unit time are

Tt:Tt*Tt_l,til,Q,...

and the returns are given by

S 1
Xt = log (St1> ~ U + 07—1& + O'Tté Wla (5)
t7

where ~ denotes equality in distribution.

If increments 7, ~ RI'(%,% ), with PDF

v
52\ 2
2 _v_q _2a2

frr(z) = corT 2 e 2w, x>0 (6)
r(5)
then assuming § = 0 and o = 1, the log returns

X, is stationary process with marginal Student
T(u,0,v) distribution

_ e 1
COVAT(E) 14 ()2

where p € R is a location parameter, § > 0 is a
scaling parameter, v > 0 is a tail index.

If 6 # 0 and o # 0, then returns are skewed
Student distributed.

After choosing model for risk factors we need
simulating (generating) N scenarios for this model
over time horizon.

[si()

€R, (7)

Simulating for Student-like models with
fractal activity time

For simulating N scenarios for Student-like
models with fractal activity time over time hori-
zon we proposed the following iterative scheme [6],
which follows from (4):

52
Tpt1 = T+ pux At+ (04 E)kak +ovTeer (8)

where u, o and 0 are constants, which can be found
from historical data; € - white noise with normal
standard distribution, and 7 is a stationary process
of active time, with inverse gamma distribution,
which was modeled earlier (see [2], [8], [9], [10]).

Now we need to construct a iterative scheme
for stochastic diffusion process 7 with a given
marginal gamma-inverse density:

_ ﬁa —a—1_-3/z
f—@x le=ble, (9)

where a = %; B=3.
Using Bibby’s article[4] and our paper [10] the

process 7; can be determined by the equation:

v | 40
— - 2 1
dr 0 <7’ 52 2) dt + 5 27‘ dw, (10)

where 6 - coefficient of the autocorrelation func-
tion.

From (10) we can easily build an iterative
scheme:

v 40
Tk+1:Tk—9<$—62_2) At + 52_2T2At6k
(11)

Thus, for simulating we use iterative scheme
(8), where 7; can be generated by (11).
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Procedure of finding V@R for some kinds
of investor portfolios

Now we discuss procedure of finding V@R for
two types of portfolios © = (21, ...,24), where z;
denotes the fraction of asset ¢ in this collection.
The first one is uniform portfolio, where d assets
are equally distributed. The second is optimal
portfolio, where variance of which return is the
smallest out of all other portfolios with the same
mean return. It seems reasonable that the portfo-
lio with the same average return, but lower risks of
loses should be "better" for profit-seeking investor.

Therefore according Markovitz approach, the
portfolio will be called optimal if it has the small-
est possible variance under fixed expected value of
its returns. Optimal portfolios can be analyzed in
a mean-variance framework if the returns on the
assets are jointly elliptically distributed, including
the special case in which they are jointly normally
distributed.

Under mean-variance analysis, it can be shown
that every minimum-variance portfolio given a par-
ticular expected return (that is, every efficient
portfolio) can be formed as a combination of any
two efficient portfolios.

Formally, given x = (x1,x2,...24) is the distri-
bution of our funds among assets 1 to d we need:

o2 = min (12)
subject to:
d
fo = > ity =T, (13)
i=1
d
d wi=1 (14)
i=1

This problem (12)-(14) of solving conditional
extremum problem can be reduced to uncondi-
tional extremum problem using Lagrange multi-
plier method and Lagrangian function is written
in the form:

d d
L(21,....2aq,u,0) =351 25 07T —

—v X [Z?zl WiT; — r} —u X [Z?zl T — 1] ,
(15)
where Ufj is covariance of assets ¢ and j, u; is
a mean return on asset i, r - targeted mean return
of a portfolio.

Thus the procedure includes the finding covari-
ance matrix afj of assets ¢ and j, building the op-
timal portfolio, applying iterative scheme for gen-
erating N scenarios by sampling changes in risk

factors AS(1),..., AS(N) over horizon At, deter-
mining losses Y (1), .., Y(N) by subtracting revalu-
ation in each scenario from current portfolio value;
building the empirical distribution function G(Y)
and finding a quantile for given probability «.

Numerical results

In this section, numerical results between his-
torical simulation and Monte-Carlo simulation for
investor optimal portfolio and the portfolio with
uniform distribution of stocks are demonstrated.

We took three assets for illustrating our ap-
proaches:

Asset 1 - Facebook shares
Assets 2- Boeing shares
Asset 3 - Goldman Sacks shares
and considered two different portfolios: uniform,
where
x=1(1/3,1/3,1/3),

and optimal
x = (0.413,0.225,0.362),

which was built using Lagrange multiplier method.
We obtained the following values of Value at Risk
during monthly time interval and confidence level
p = 0.95, which are presented in Table 1.

Table 1. Numerical V@R comparisons

Historical Normal Monte-

Simula- Assump-  Carlo

tion tion FAT Sim-

ulation

Facebook -8.374 -9.054 -12.042
Boing -10.698 -10.652 -13.373
Goldman -10.461 -10.692 -12.420
Opt.Port. -8.082 -7.314 -8.940
Uniform -8.111 -7.410 -9.467
Port.

Overall, the results show that the optimal port-
folio demonstrates the smallest possible Value at
Risk under different probabilistic scenarios.

Conclusions

In this paper we propose procedure for VQR
evaluating by Monte Carlo method for Student-
like models with fractal activity time. We use
this method for some investor portfolios of risky
assets. We show that optimal Markovitz portfo-
lio demonstrates in the most of cases the smallest
possible Value at Risk comparing with other port-
folios. Thus, for making investor decisions under
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uncertainty we recommend to apply portfolio op- ble Value at Risk for optimal portfolio comparing
timization and value at risk approach jointly. with other investor portfolios. The other problem

However we have perspectives for further re- is to include some derivatives in investor portfolio.
search. Tt is interesting to find necessary and /or Finally it is useful to apply the expected shortfall
sufficient conditions which provide smallest possi- risk measure.
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Conomanwyr I K., Hlecmiwox H. FO.

HIIXO/IW 1O MOJEJTIOBAHHY PU3UKY JIJIS
CTBIOJIEHT-TIOIBHUX MOJEJIEN I3 ®PAKTAJIHBHUM
AKTUBHUM YACOM

Cmammio npuceaueno npobaemi eumiprosanns pusury (VQR) das Cmovrodenm modeseti punkie
3 Ppaxmanvrum axmusnum wacom, (FAT). Modeni punkie 3 @Gpaxmasvhum axmueHuM %acom 6yiu
seedeni Xetide, w06 cnpobysamu oTONUMU EMNIPUYHO 3HATUOEHT TAPAKTNEPUCTIUKY PEANOHUL OGHUL 1
NOKPAUUMY HAAE6HT modeai. L[i modeai 6stce byao docaidoceno das Variance Gamma posnodiay, normal
inverse Gaussian poanodiay i skewed Student posnodiay. IIpome npobaemu BUMIPIOBAHHA PUSUKY 6 YUL
modeasx ne 6yaso docaidstceno. Bapmo 3aysascumu, AKUL0 MU BUKOPUCTNOBYEMO MOJEAT 3 HOPMAALHUM
poanodisom abo 3 cumempuurum posnodisom Cmurodenma, mo VQR moocha obuuciumu 3a donomozo1o
cMandapmruz cmamucmuyHur nakemis. Jaa pospaxynky VAR das modenetds i3 ckocobouenum posno-
dinom Cmurodenma, nam 3nadobumsca memod Monme-Kapao ma imepayiting crema 0ai MoOea08aHHA
N cuenapiie uyin axyit. Mu modesoemo yinu axuyit ax npouyecu oudysii 3 GPaxmMasbHUM GKMUSHUM
YACOM, G OAHL MOOEAIOBAHHA NPUPOCTIE NPOUECY UbO20 HOB020 YACY MU GUKOPUCTNOBYEMO THULUT NPOUEC
dugpy3sii, axuli mae 3a0aHUT 2PAHUNHUT 360DOMHUT 2aMMa-Po3nodia. Mema pobomu noasszae y 3acmo-
cyearHi ma nopienanni memody Monwme-Kapao das obuucrenna mipu pusuxy VQR ma nidxody Mapro-
6140 daa modeaett muny Cmorodenma, y mepminaxr nopmepesvrozo pusuky. ia 4bo2o Mu nponoHyemo
npouedypy posparynry VAR das déoxr munis nopmdenie ineecmopis. Ilepwuii — 0odnopionuid nopm-
pean, de axmusu wa d posnodineni nopieny. Ipyeuti — onmumasrvrut nopmpearv Maprosiua, das arozo
ducnepcis NPpubymKro80cmi € HAUMEHWONW 3 YCIT THWUT NOPMPEAI6 3 MAKW HC CEPEIHBLON NPUOYMKOEI-
cmiw. 3anpozpamosara modessv, axa 6yasa nobydosarna 3 sukopucmarnam R-cmamucmuru, mooce bymu
BUKOPUCTNAHA OAL MOJENWBAHHA OAA OYIb-AK020 aKMUEY Ma 0aA 106YI06U ONMUMAALHUL TOPMPenie
a5 6Yoo-aKol 3adanoi Kiavkocmi axmueis. Taxosc U0 MOJEAb MOHCHA BUKOPUCTAMU, U006 3PO3YMIMU,
A% yel onmumarbHul nopmeess nNoeoduMbCH NOPIBHAHO 3 THWUMU NOPMPEIAMU 0AA MOJesel muny
Cmwrodenma na punkar 3 GpaxmarvbHum 4acom axmuerocmi. Taxootc mu HAB00UMO YUCAOBT PE3YAbMA-
mu 0as ouyinku VQR das obor munie nopmdgearsn ineecmopa. I[loxasaro, wo onmumarbHut nopmpens
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Mapxosiua demoncmpye 6 biavwocmi sunadkic HAUMEHULY MOHCAUBY MIDY PUSUKY NOPIGHAHO 3 THULU-
mu nopmgeaamu. Taxum wurom, 0as NPUTHAMMA PIULEHD THBECTNOPAMU 8 YMOBAT HEBUIHAYEHOCTIVE MU
PEKOMEHIYEMO CNIALHO 3ACTMOCOBYEAMU ONMUMIZAYIN NOPMPers ma nidTid UMIPIOSAHHS PUSUKY.

Karouosi caoBa: mipa pusuky, posnoaii Creionenta, Morre-Kapio mMeron, Mojmenb 3 aKTUBHUM
dpaKTaIbHUM 9aCOM, ONTUMAJIbHUN HOPTQEb.
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