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TWO APPROACHES FOR OPTION PRICING UNDER
ILLIQUIDITY!

The paper focuses on option pricing under unusual behaviour of the market, when the price may not
be changed for some time what is quite a common situation on the modern financial markets. There are
some patterns that can cause permanent price gaps to form and lead to illiquidity. For example, global
changes that have a negative impact on financial activity, or a small number of market participants, or
the market is quite young and is just in the process of developing, etc.

In the paper discrete and continuous time approaches for modelling market with illiquidity and eval-
uation option pricing were considered.

Trinomial discrete time model improves upon the binomial model by allowing a stock price not only
to move up, down but stay the same with certain probabilities, what is a desirable feature for the illiquid
modelling. In the paper parameters for real financial data were identified and the backward induction
algorithm for building call option price trinomial tree was applied.

Subdiffusive continuous time model allows successfully apply the physical models for describing the
trapping events to model financial data stagnation’s periods. In this paper the Inverse Gaussian pro-
cess IG was proposed as a subordinator for the subdiffusive modelling of illiquidity and option pricing.
The simulation of the trajectories for subordinator, inverse subordinator and subdiffusive GBM were

performed. The Monte Carlo method for option evaluation was applied.
Our aim was not only to compare these two models each with other, but also to show that both models

adequately describe the illiqguid market and can be used for option pricing on this market.

For this

purpose absolute relative percentage (ARPE) and root mean squared error (RMSE) for both models were

computed and analysed.

Thanks to the proposed approaches, the investor gets a tools, which allows him to take into account

the illiquidity.

Keywords: subdiffusion models, subordinator, inverse subordinator, hitting time, trinomial tree

model.

Intoduction

Analysis of different financial markets shows
that during global crises that have a negative im-
pact on financial activity we can observe some
kinds of risky assets which have the periods in their
dynamic without change. Such behavior is typical
for emerging markets with low number of transac-
tions, for interest rate markets and for commod-
ity markets. So for these markets the problem of
evaluating fair price of derivative instruments on
stocks have become extremely important.

The classical diffusion models for continuous
time like Black-Scholes-Merton (B-S) and its dis-
crete variant - binomial tree model of Cox-Ross-
Rubinstein (C-R-R) [2] are incapable of adequately
modelling illiquidity for real-life asset dynamic and
evaluate derivatives. This happens because classi-
cal binomial C-R-R model allows a stock price only
to move up or down and do not take into account

the stagnation periods. In benchmark B-S model
Brownian motions is perpetually moving and we
can not use it for modeling periods with motion-
less stock returns too.

In order to overcome this difficulty for discrete-
time approach was considered the trinomial tree
model. This model improves upon the binomial
model by allowing a stock price not only to move
up or down, but stay the same with certain proba-
bilities, what is a desirable properties for the illig-
uid modelling.

For continuous-time approach one can notice,
that the constant periods of stagnation in financial
processes are analogous in nature to the trapping
events of the subdiffusive particle. Therefore, the
physical models of subdiffusion can be successfully
applied to describe financial data. See for exam-
ple paper [6], where option pricing was proposed in
fractional jumpsB“diffusion model, papers [7] for
Black-Scholes formula and [8], [14] for Bachelier
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model in subdiffusive regime.

The aim of the work was to consider two dif-
ferent approaches for modelling market with stag-
nation periods: to apply trinomial tree model and
propose IG prosess as a subordinator for subdiffu-
sive model.

The paper is organized as follows. In the next
section we remind what is trinomial tree model and
how we can apply it to find fair option price for real
historical data. This section is based on the papers
[1], [3], [4], [5], where different types of trinomial
tree models are presented. We show how model
parameters for real financial data can be identified
and the backward induction algorithm for building
call option price trinomial tree can be applied.

In the third section we consider IG process as
subordinator of subdiffusive GBM and its proper-
ties. The simulation of the trajectories for subordi-
nator, inverse subordinator and subdiffusive GBM
were performed. Also we describe Monte Carlo op-
tion pricing techniques for this case.

Forth section contents some numerical results
for real financial data, absolute relative percentage
(ARPE) and root mean squared errors (RMSE) for
both models and its comparison.

Trinomial tree for modelling of illiquidity

Trinomaial tree parameters setting. As we
mentioned above, Ross-Cox-Rubinstein binomial
tree model [2] is incapable of adequately modelling
illiquidity for real-life asset dynamic and for evalu-
ating derivatives because this model allows a stock
price only to move up or down. A more advanced
model that can be used for describing of the stag-
nation’s periods is the trinomial tree model. This
model based on the principle that the stock price
may move up, down, or stay the same with a cer-
tain probability. This rule is important for mod-
elling of the stagnation’s periods.

The general form of the tree is as shown in the
Figure below.
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Figure 1. Trinomial tree

Various types of trinomial trees have been pro-
posed in the literature for pricing financial deriva-
tives. See for examples, [3], [4], [5]. As with bi-
nomial trees, there is freedom to choose the pa-
rameters of a trinomial tree, depending upon what
characteristics one wishes to emphasize. For exam-
ple, one can attempt to match higher moments, or
attempt to obtain smooth convergence. The de-
scription of the trinomial model in this subsection
mostly is based on paper [3]. A trinomial tree is
characterized by the following parameters:

u - coefficient of price increase

d - coefficient of price reduction

m - coefficient of price stagnation

Py~ the probability of an increase in the stock
price

pg- the probability of a decrease in the stock
price

Pm- the probability of a staying the same in the
stock price

We choose the parameters u, d, m to match the
volatility o of the stock price. The step is of length
At. According to the assumption from [3]:

u=e’ 2At
m=1 (1)
d=e° 2At.

Also one can match the first two moments of
our models distribution according to the no arbi-
trage condition. In a risk-neutral world, the ex-
pected return on all assets is equal to the risk-free
interest rate (this means that all expected gains
are discounted at the rate) and the variance can
be expressed as follow [3]:

E(Sy) = Spe™t (2)

var(Sy) = SgeZTAt(e"QAt -1) (3)

We equate two values for mathematical expecta-
tion (2) and variation (3) to form two equations of
the system. Also, using the property that the sum
of the probabilities equal to unity, we write down
the third equation. So, we got a system of three
equations and three unknown variables:

PutPm +pa=1
UPy + Mmpym, + dpg = €”
u?py + m2py, + d*pg —

At

(4)
From this system the probability values for the
trinomial model are:

eQrAteazAt _ eQrAt(d + 1) +d

Pu =

(u—d)(u—1)
| ertert At _ 2rdt(y 1 1) 4y (5)
ba= (d—u)(d—1)

Pm = 1—py — D

(erAt)2 _ eQrAt(engt _
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The above setting (1) for parameters and (5) for
probabilities we use in the next sections for option
pricing numerical result.

Option pricing for trinomial model . The
methodology when pricing options using a trino-
mial tree is exactly the same as when using a bino-
mial tree. To determine the option price f based
on the trinomial tree, the following algorithm is
used:

1. Declare and initialize S(0)

2. Calculate the jump sizes u,d, m

3. Calculate the transition probabilities

Pus Pdys Pm

4. Build the share price tree

5. Calculate the option payoffs at maturity
time 7T, i.e node N:

for the call option

S—K, S>K
s-xr={ S0 2K o
for the put option
K-S K>S
w-st={ K08 825w

6. Apply the following backward induction algo-
rithm, where u represents the time position and j
the space position

—frlkt(

fuj=ce Pufutt,j+1 + Pmfustje1 + Pafus1j+1) (8)

7. The fair price f of the European call or put
option is

f=Joo (9)
We apply this algorithm for option pricing for get-
ting numerical results for real financial data with
stagnation’s periods.

Numerical results for trinomial model.
We consider Airbnb company spot price Sy
= 103.51 for June 24, 2022. The strike price is
K =100 for call options with maturity 7 is given
for ten different dates. The yearly volatility for
returns of the underlying asset is computed as o =
= 0.5758, the yearly riskless interest rate is set as
r = 0.16.

For these input parameters we compute jump
sizes and the transition probabilities

uw=1.02m=1,d=0.98, (10)
pu = 0.4166
pa = 0.4169 (11)
Pm = 0.1663

and build the share price trinomial tree. The first
5 steps of this tree is demonstrated in the Graph
below.
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Figure 2. Trinomial tree for 5 steps

After that we apply the backward induction al-
gorithm and build call option price trinomial tree.
See Graph for T' = 5.
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Figure 3. Tree of pay-off function for 5 steps

The fair price for this call option is C' = 6.1957.

The results for different times of maturity are
demonstrated in the figure 4.
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Figure 4. Simulated prices for the binomial and
trinomial option pricing models

Subdiffusion for modelling of illiquidity

Subdiffusion processes with I1G subordi-
nator and its simulation. For modelling of
illiquidity in continuous case it is useful to apply
the subdiffusion process, which is used in statis-
tical physics for describing the trapping events of
the subdiffusive particle. In physics, this process
usually is described by Fokker-Planck fractal equa-
tions.

Equivalent description of subdiffusion there ex-
ists in terms of subordination, where the stan-
dard diffusion process is time-changed by the so-
called inverse subordinator. In this section we con-
sider B-S model and the standard diffusion process

2

oo oo
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GBM for describing underlying risky asset in sub-
diffusive regime. For it we replace the calendar
time ¢ in classical GBM [7]

dX (t) = <M + ";) X(t)dt + o X()dB;, t> 0.

(12)
with some stochastic process H(t) and obtain sub-
diffusive GBM

0.2
dXH(t) = (u + ) XH(t)dHt + O'XH(t)dBH(t).

2
(13)
In formula (13) H(t) is called the inverse subordi-
nator and it definded as

H(it)=inf(r>0:G(1r) >t)).

The inverse subordinator H (t) is also called a "hit-
ting time" and is interpreted as the time of first
reaching a certain price, which may not change for
some time. By construction, the inverted process
may be constant. Therefore, any process subordi-
nated by H(t) exhibits motionless periods.

The difinition (3.1) of the inverse subordinator
is based on the use of some other random process
called a subordinator G(t).

The subordinator G(t), in its turn, is generally
a non-decreasing stochastic process with station-
ary independent increments with right continuous
left limits sample paths.

Many types of subordinators such as a-stable,
tempered-stable, Gamma, Poisson and other have
been already applied for different subdiffusive
models of illiquidity (see for example [6], [7], [8],
[14]).

In this paper we propose to take the Inverse
Gaussian process IG as a subordinator for the sub-
diffusive modelling. The G(t) process is a non-
decreasing Levy process (i.e., process with sta-
tionary independent increments), where the incre-
ments G(t + s) — G(s) follow the inverse Gaus-
sian G(dt,~y) distribution with probabilities den-
sity function (PDF) with parameters v and § (see
for example [9]):

ot SN o2

x7t’ 75 =
9(2,8,7,0) = 72—

For the standard IG distribution, where y = § =1
the PDF will be

t —1)2
exp<—(x )>, x>0,

2x

Then for any moment ¢ we have E(G(t)) = t,
var(G(t)) = t.

The tail probability for G(dt, ) is studied in [9]
and equals

2 6t
P(G(t) > x)w\/zvzewtx?’me("ﬁ/?”, T — o0.

The ¢-th order moments of the G(dt,~) are given
by

2 S q—1/2
EGI(t) = 5() 2K, (S1),

™ \Y

where K (w) is the modified Bessel function of
the third kind with index g, defined in [9].

The algorithm of the simulation of the IG pro-
cess G(t) for time points t; = 1 to = 2, ¢, =1
can be presented into the following steps [9]:

1. For i = 1,2,...,n and dt = 1/n we generate n
independent identically distributed inverse Gaus-
sian variables F; assuming v = A =1

a) Generate a standard normal random variable
N.

b) Assign X = N2,

) Assign Y =dt + 5 + & * V/4dt.

d) Generate a uniform [0, 1] random variable U.
e) IfU < dtdﬁ return Y'; otherwise return @
2. Assign G(tp) = 0 and G(t;) = 23:1 Fji =
=1,2,...,n

3. G(t1),G(t2), ..., G(t,) are n simulated values of
the IG process at times t1, to, ..., t,, respectively.

The simulation of the trajectory G(t) is demon-
strated below on Figure 6.

Figure 5. Simulation of the IG process trajectories

The inverse subordinator H(t) is also called a
hitting time or stochastic clock defined by (3.1) is
the inverse to the IG process. The IIG process
was studied in [9], where were found as ¢-th order
moments of the ITG(dt,~)) as its tail behaviour.

In order to simulate the approximate trajectory
inverse subordinator H (t), we define H(At) with
the step length A as follows [9]:

Ha(t) = [min{n € N : G(An) > t}-1]A,
(14)

n=12,...
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where A is the step length and G(An) is the
value of the Inverse Gaussian process G(t) evalu-
ated at n.

The simulation of the trajectory H(t) is demon-
strated on Figure 7.

For simulation of the trajectory subdiffusive
GBM X (t) we remind that the Ito equation al-
lows modeling the time dynamics of an arbi-
trary stochastic process by means of the iterative
scheme[15]:

Tht1 = xk+a(:ck7tk)At+b(xk7tk)\/Esk. (15)

In paper [16] were considered iterative schemes
for fractal activity time processes with inverted
gamma subordinator. For modeling stochastic
subdiffusive GBM we propose the next iterative
scheme

Tp1 = T + prAH(t) + oxg/AH (t)er, (16)

where ¢ is white noise with normal standard dis-
tribution, AH (t) have I1G distribution.

The simulation of the trajectory X (t) according
(16) is demonstrated on the Figure 6.

Figure 6. Simulation of the inverse to the IG process
trajectories

Meanwhile, the trajectory for the subdiffusion
GBM with the inverse to the IG process is demon-
strated on the Figure 7.

500

Figure 7. Simulation of the subdiffused Geometric
Brownian motion with inversed IG subordinator

Monte Carlo method for option pricing
n subdiffusion Black - Scholes model. The

fair price of the European call option in the non
fractional B-S model (12) is given by:

C(S,K,T,r,0) = N(d1)S — N(do)Ke™™" (17)

with
log ¢ + T + Lo?T
dy = 2K T TR0 (18)
oVT
log 52 + T — Lo2T
LD 2 (19)
oVT
are both functions of five parameters:

T,K,Sp,r,o,and N(-) is a standard normal cumu-
lative distribution function, 7" is time to maturity
(in years), r is interest rate and o is volatility.

Consider a time-changed version of the B-S
model, where the underlying risky assets follow
(13). Then, as were shown in [7] the market
model is arbitrage-free and incomplete and the cor-
responding fair price of the European call option
in subdiffusive regime [7] is

Csub (S7 Ka Ta U) = <C (S) KvH(T)’U»

:/’C@K%@m@ﬂm (20)
0

Here, g(z,T) is the PDF of H(T) and
C(S,K,T,o0) is given by (17).

It is worth to mention, that the proof of for-
mula (20) for fair price is based on the common
ideas for changed time models, see for examples
proof in [11] for Student model with FAT or for
Student-like FAT in [10] and their applications in
[13], [12].

There are two ways of finding the values of the
price C(-). One is to calculate C(-) by approxi-
mating the integral in (20). However, this can be
performed in cases, where g(x, T') is known exactly.

The other way is to find C(-) by using the
Monte-Carlo method. One simulates the trajec-
tories for the inverse subordinator on the interval
[0,7] by the approximation scheme (14). Then,
one obtains the fair price as an estimation of the
expected value for simulated prices where the in-
verse subordinator stands for calendar time 7' in
(20)

Coup(S, K, T,r,0) =(C(S,K,H(T),0))

= %ZC(Sv K7 Hi(T)7U)7
i=1
where C(S, K, T, o) is taken from Black-Scholes
option pricing formula (17).
One can see the applying of the Monte-Carlo
method for option pricing in subdiffusive models,
for example, in the papers [7], [§], [14].

(21)
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Numerical results for subdiffusive Black-
-Scholes model . For the company "Airbnb" the
input parameters are: S = 103.51, K = 100, r =
= 0.16, 04; 7y = 0.5758 for the diffusion model (see
section 2.3 above).

First we simulate N trajectories of subordina-
tor G(t), that is a process of independent station-
ary increments having IG distribution.

After that we simulate N values of the inverse
IG subordinator H(T') for every given time to ma-
turity 7" and calculate N option price values, using
Black-Scholes option pricing formula (17).

Then find the fair price as a mean for IV scenar-
ios, obtained in the previous step according (21).

The results are presented in the graphic shape
in Fig. 8.

—— Market price:
BI-Sch diffusion price
~— BlSch subdiffusion price

Lt 8jul 100 2 2970 19 Aug 16 5ep 210ct 16 bec 20jan

Figure 8. Simulated prices for the diffusive and
subdiffusive B-S models

As we can see from graphics in Fig. 8., the
diffusive option pricing model shows better results
on the short-term period, while the subdiffusive
model is more effective on the long-term perspec-
tive.

For more detail we need to compute and com-
pare the estimation errors.

Comparison of the two models

In this section we compare numerical results for
AIRBNB company for two proposed models. It is
a trinomial tree model and subdiffusive B-S model
with IG subordinator.

Our aim is not only to compare these two mod-
els each with other, but also to show that both
models adequately describe the illiquid market.

In Fig. 9 we compare the subdiffusive B-S for-
mula for European call options with the classical
one and with option pricing using trinomial tree
model. We estimated the values of subdiffusive B-
S formula using Monte Carlo methods based on
the above described simulation procedure.

W
B
B
i

Ljul 8 jul B 2 293
Working days to e

Figure 9. Comparison of the trinomial model and
the B-S subdiffusive approach for the call option
pricing

To compare numerical results we use abso-
lute relative percentage (ARPE) and root mean

squared error (RMSE):

|.’E(tk) — Tezact (tk?)‘

ARPE = 22
Tezxact (tk) ( )

o 1 n Ti — Lezact; 2
RMSE = \/ X (702_ ) (23)

It is worth to mention, in econometrics, the root
mean squared error (RMSE) (22) is a key criterion
for model selection. The mean squared error in-
dicates the mean squared deviation between the
forecast and the outcome. It sums the squared
bias and the variance of the estimator.

The advantage of the ARPE (23) relatively to
the RMSE measure is that it gives a percentage
value of the pricing error.

Therefore, if we use both these errors it pro-
vides more insight into the economic significance
of performance differences.

RMSE
B-S 1.82
B-S Subdiffusion 1.85
Trinomial model 1.54

Table 1. The RMS errors for diffusion, subdiffusion
and trinomial models regarding to the market price

Conclusion

In the paper two different approaches for mod-
elling market with stagnation periods were consid-
ered. We apply well-known trinomial tree model in
discrete time case and propose subdiffusive model
with /G subordinator in continuous time case.

For the option pricing the backward induc-
tion algorithm trinomial tree model was used. In
the continuous time case Monte-Carlo method was
proposed.
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The programmed model can be used to valu-
ate option price by several different methods and
it can help to make decision.

To compare numerical results we used abso-
lute relative percentage (ARPE) and root mean
squared errors (RMSE).

In the framework of the paper we compared op-
tion prising results in situation when strike price K
was fixed (in the money), while time to maturity
T were changing.

If we compare classical B-S model with subdif-
fusive one, the results show that the diffusive op-
tion pricing B-S model shows better results on the
short-term period, while the subdiffusive model is
more effective on the long-term perspective. Mean-
wile RMSE is bigger for proposed subdiffusive

model then for classical B-S one. Comparing sub-
diffusive B-S model with trinomial one we assume
that trinomial model has the smallest RMS error.
In the future we are going to examine the ARP
pricing errors of the proposed option pricing mod-
els in more detail (see paper [17] ) and consider the
pricing errors as a regression on the time to matu-
rity T'(in years), the moneyness of the option, and
a binary variable that is set to unity, if the option
is a call and to zero in the case of a put. This can
indicate a level of explanatory value of moneyness,
maturity and the put-call dummy in the model.
Our next step is to apply the procedure of cal-
culating value-at-risk in the proposed model (with
IG subordinator) and analyze it for different types
of investor portfolios like in the papers [17], [18].
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NBA TIIXOJIN 10 IITHOYTBOPEHHS OIIIIOHIB B
VMOBAX HEJIKBIITHOCTI

Cmammio NpuceaueHo UiHOYMBEOPEHHIO ONUIOHIG 68 YMOBAT HEAIKEIOHOCTE, KOAU UiHG HAG PUHKY MO-
ofce He 3MIHIBAIMUCA NPOMAZOM 0eAK020 %aCY, W0 € JOCUMD NOWUPEHOW CUMYGUIEN HA CYNACHUT Pi-
HAHCOBUT PUHKAL (HANPUKAGO, 2A00GAbHI 3MIHU, AKI HE2ATUGHO 6NAUBAIOTNG Ha GIHAKCOBY MIANGHICTID,
ab0 HEBEAUKA KiALKICTID YUACHUKIG PUHKY, 400 PUHOK, WO MIALKY PO3BUBAEMBC, MOUWO).

Y cmammi pozeasanymo duckpemnudl i Henepepsrul nidrodu das Modes08aHHA Ma UTHOYMBOPEHHA

ONUIOHIB 8 YMOBAT PUHKY 3 HEAIKGIIHICTIO.
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s duckpemmnozo wacy 6yao 006paHO MPUHOMIAALHY MOJEAL, WO B00CKOHANN0E biHoMiaAbHY, d0-
360AAN0NY UIHE AKULT HEe MIALKU PYTAMUCA 620DY, 6HU3, GAe T 3AAUULAGMUCA HE3MIHHONW 3 NEBHON
UMOBIDHICTNIO, WO € OAHCAHONW BAGCTNUBICTNIO MOJEAOBAHHA 6 YMOBAT Heaiksidnocmi. Y cmammi byau
BU3HAYEHT NAPAMETNPU MPUHOMIGALHOT MOJEAT OAA PEGALHUL PIHAHCOBUL JGHUL | 3ACTMOCOBAHO GA20-
PUMM 360pOMHOT THOYKULE 044 OUIHKU UYIHU KOA-OTUIOHY.

s nenepeperozo wacy 0as MoOeA08aHHA NEPI0Aie cMa2Hayii GinaHCoOBUT 0aHUT YCNIULHO 3GCMOCO-
8YEMBCA CYOOUPY3TTHA MOOEAL, U0 3 ABUNACA OAA ONUCY NOJiT 3aTONAEHHA BIZUNHULT YACMUHOK. Y Uil
cmammi 6ye 3anpononosanuli obeprenull 2ayciécvkul npoyec ax cybopdunamop dan cybdudysitinozo
MOOEAIOBAHHA HEATKGIIHOCTNT Ta UiHY ONUIOHIE. BUKOHAHO CUMYAAUT0 mpaekmopit dis cybopdunamo-
pa, obeprenozo cybopdunamopa ma cybdudysitinozo I'BM. JIas OUiHKU ONUIOHI6 3GCTMOCOBAHO MEMOJ
Monme-Kapao.

Haworwo memoro 6ya0 He miavku nopiewamu ui dei modeai, a U nokazamu, uo obudsi modesi ade-
KBAMHO ONUCYNOMb HEAIKEIOHUT PUHOK § MOXMCYMb OYMU BUKOPUCTNAHT OAf4 UTHOYMEBOPEHHA ONUIOHIE
HA YbOMY PUHKY. JIAfs U020 OYA0 PO3PATOGAHO MG NPOGHAAI306aH0 abcortomui eidnocni (ARPE) i
cepednvorsadpamuyuni nomusky (RMSE) das 0b6ox modeset.

3aedaru 3anpononosarHuM nidLodam IHEECTNOD OMPUMYE THCIPYMERMApIl, Axul dae 3M02Yy 6paxy-
64MU HEAIKGIOHICTND.

Kurro4oBi caoBa: cyOaudysiitna MOze b, CyOOpAuHATOD, 00epHEHHU CYOOPIMHATOD, JaC MO, TaHHS,
TPUHOMIATIbHA, MOJIEb.
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