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SPEECH AUDIO MODELING BY MEANS OF CAUSAL
MOVING AVERAGE EQUIPPED GATED ATTENTION

In the paper we compare different attention mechanisms on the task of audio generation using un-
supervised approaches following previous work in language modeling. It is important problem, as far as
speech synthesis technology could be used to convert textual information into acoustic waveform signals.
These representations can be conveniently integrated into mobile devices and used in such applications
as voice messengers or email apps. Sometimes it is difficult to understand and read important messages
when being abroad. The lack of appropriate computer systems or some security problems may arise.
With this technology, e-mail messages can be listened quickly and efficiently on smartphones, boosting
productivity. Apart from that, it is used to assist visually impaired people, so that, for instance, the
screen content can be automatically read aloud to a blind user. Nowadays, home appliances, like slow
cookers can use this system too for reading culinary recipes, automobiles for voice navigation to the
destination spot, or language learners for pronunciation teaching. Speech generation is the opposite
problem of automatic speech recognition (ASR) and is researched since the second half of the eighteen’s
century. Also, this technology also helps vocally handicapped people find a way to communicate with
others who do not understand sign language. However, there is a problem, related to the fact that the
audio sampling rate is very high, thus leading to very long sequences which are computationally difficult
to model. Second challenge is that speech signals with the same semantic meaning can be represented by
a lot of signals with significant variability, which is caused by channel environment, pronunciation or
speaker timbre characteristics. To overcome these problems, we train an autoencoder model to discretize
continuous audio signal into a finite set of discriminative audio tokens which have a lower sampling
rate. Subsequently, autoregressive models, which are not conditioned on text, are trained on this rep-
resentation space to predict the next token, based on previous sequence elements. Hence, this modeling
approach resembles causal language modeling. In our study, we show that unlike in the original MEGA
work, traditional attention outperforms moving average equipped gated attention, which shows that EMA
gated attention is not stable yet and requires careful hyper-parameter optimization.

Keywords: audio modeling, artificial neural networks, attention mechanism.

Introduction

Audio signals consists of several abstraction
layers. For example, speech audio can be analyzed
at a very fine-grained acoustic or text level but also
in terms of speaking style, syntax, grammar, or se-
mantics. Music and singing also have a long-term
structure, while being composed of complex non-
periodic acoustic signals. In the case of audio syn-
thesis and generation, these multiple abstraction
layers interact in such a way that getting high au-
dio quality while demonstrating good consistency
level remains a challenge, in particular in unsuper-
vised training scenarios. Latest audio generation
models have reached nearly genuine signal quality
by using methods such as auto-regressive waveform
modeling, adversarial training, flow[1] or diffusion
models[2].

During the recent years audio generation qual-
ity significantly developed, mainly attributed to
the introduction of cost functions that outperforms
basic audio time-domain regression. In particular,
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WaveNet [3] introduced an autoregressive gener-
ation approach to audio generation, with quality
that was significantly better than traditional con-
catenative and parametric methods at the cost of
slow inference. While WaveNet was a good basel-
ing for more computationally efficient models such
as WaveRNN [4] or parallel WaveNet [5], a signif-
icant paradigm shift happened with the introduc-
tion of adversarial audio synthesis [6; 7], which en-
abled high fidelity generation without any autore-
gressive component. Moreover, combining such
high-quality generation systems with differentiable
vector quantization [8; 9], made possible to train
jointly neural audio codecs by compressing acti-
vations in a bottleneck layer. In this work, it
was used tokens produced by a VQ-VAE neural
codec [8], not as intermediate features for signal
reconstruction, but rather as ground truth for a
sequence modeling task operating at a lower frame
rate, which can be reverted back to audio spectro-
gram at the original frame rate.
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Figure 1. VQ-Vae architecture

Theoretical Background

Discrete audio representation. It is a com-
mon technique to discretize image or audio signal
using an autoencoder with vector quantization as
in VQ-VAE [8]. The main idea is to map the en-
codur output vectors to the nearest codebook vec-
tor e. Subsequently, mapped codebook vectors are
passed to the decoder. Training objective is the
following:

L =logp(z|z4(z)) + Bllze(x) — sgle]ll3

where sg is the stopgradient operator which is an
identity at forward pass time and has zero gradi-
ent, thus effectively constraining its parameter to
be a constant variable. The decoder optimises the
first loss term only, the encoder optimises the first
and the second loss terms. Autoencoder architec-
ture can be seen in the Figure 1.

Self Attention mechanism. Traditional
self-attertion mechanism is the following function:

QK"
e

where X = (x1,...,x,) is the input sequence
with length n, Attention : R"*? — R"*9 is the
self-attention function and dj is the input dimen-
sionality. It is also assumed that input and outputs
sequences have the same length.

Y = Attention(X) = f(“e)V, (1)

Q= XWy+ by,
K= XW,; + by,
V=XW,+b,

are the sequences of queries, keys and values, with
learnable parameters W,, Wy, W, € R¥*4 and
by, b, by, € RL f(-)is an activation function, e.g.
the softmax function. -

The matrix A = f(%) € R™™ is called
the attention matriz, as it specifies the weight of

the dependency strength between every pair of to-
kens in X. Since it models pairwise dependency
weights, the matrix A in principle delivers a flexi-
ble and powerful mechanism to learn long-distance
dependencies with minimal inductive biases. How-
ever, it is in practice a complex task to detect
all the relationship patterns in A directly from
data, especially when working with long sequences.
Also, computing A with h attention heads takes
O(hn?) space and time, and the quadratic depen-
dency on sequence length becomes a significant
bottleneck.

Moving Average Equipped Gated Atten-
tion. The gated attention mechanism in Mega[10]
uses Gated Recurrent Unit and Gated Attention
Unit (GAU)[11] as a backbone. Firstly, shared rep-
resentation is computed

X' =EMAX)=a0x+(1—a) Oy
Z = ¢si1u(Xle + bZ)

(2)
3)

where X’ is the contextual input and Z is the
shared context with z dimensions, with projection
matrix W, € R%*# and bias term b, € R?.

Similar to GAU, the query and key represen-
tations are computed by using element-wise mul-
tipliers and offsets to Z, and the value sequence is
from the original X:

Q=rq®Z+ pq eR™ (9
K=k, O0Z+ g eR™*  (5)
V= ¢silu(XWv + b'u) S Rnxv (6)

where kg, g, Kk, . € R® are the learnable scalars
and offsets of queries and keys, respectively. v is
the expanded intermediate dimension for the value
sequence. The output of attention is computed as
follows:

0f<QKT

T(X)”fel)v ERM. (1)
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=

where 7(X) is a scaling factor which was set to dj.
In the expression the term b, € R™*"™ is the
relative positional bias.
Subsequently, MEGA introduces the reset v and
update ¢ gates, and computes the candidate acti-
vation output H:

¥ = ¢sia(X' W, + by) € R"<Y
¥ = (bsigmoid(X/ng + bgp) S R4
H = ¢para(X' Wy + (y© O)U), +by) € R4

The final output Y is computed with the update
gate

Y=p0H+(1-9)0X e R™4  (g)

Numerical Experiment

Firstly, VQ-VAE model was pretrained on LJ-
Speech dataset in order to obtain discrete audio
representation. The input are mel spectrograms.
This yields latent space 4x smaller that the origi-
nal spectrogram. It consists of one dimensional se-
quence of discrete points which is 512-dimensional
vectors. There are 8192 discrete codebook vectors
in total.

Subsequently, two autoregressive models were
trained on the latent representations. The first
model is the traditional transformer decoder with
causal self attention, resembling GPT [12]. The
second model is transformer with EMA gated at-
tention. Both model were trained to maximize the
following objective:

L= Zlog P(y|z1, oy Tm)-

Model sizes are the same, which is approxi-
mately 23.5 million parameters, as well as other

hyper-parameters. The loss curves are show on

the Figure 2.

Figure 2. Auto-regressive train losses. Pink curve:
EMA Gated Attention, blue curve: traditional
transformer

As can be seen, transformer model with tradi-
tional attention mechanism performs better, how-
ever EMA Gated transformer converges much
faster.

Conclusion

In this work, it was conducted experiment to
compare different attention mechanisms on the dis-
crete speech representation. It can be concluded
that traditional self-attention performs better, al-
though the model based on EMA gated atten-
tion converges much faster. It shows, that EMA
gated attention mechanism is not robust and stable
yet, and probably requires careful hyper-parameter
tuning.
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Isaniox A. O.

MOBHE MOAEJIFOBAHHS{ AY/I0 3 JOIIOMOI'ORO
MEXAHIZMY YBATA 3 PYXOMMM CEPE/THIM

Y 4iti pobomi mu NOPIGHIEMO PidHI METAHIZMU Y8a2U Ha NPuKAGdi 3adani 2enepayii aydio, 6uUKOpuU-
CMOoBY0UY NIOTO0U «HABUAHHA €3 8UUMENAY, OEPYUU 30 0CHOBY NONEPEIHT DOCNIONCEHHA 6 MOOENIBAH-
Hi mosu. Ile saorcausa npobrema, OCKIALKY METHON02II0 CUHMESY MOBU MONCHA BUKOPUCTOBYEAMU OAA
KOHBEPMAYUTT MeKcmosot thpopmayii 6 36yK06i cuzHnasu. Tarxe NPedCNABAEHHA MOHCHG 3PYUHO iHMeE-
2pysamu 6 MobIAbHE NPUCTPOT A BUKOPUCTMOBYBATNU 8 MAKUL NPOLPAMATL, AK 2040C06L MECEHINHCEPU
ab0o NPozpamu eAexkmporHoi nowmu. Inodi 6axHCKO 3PO3YMIMU Ma NPONUNAMU BAHCAUST NOBTIOMACHHA,
nepeby6arwu 3a kopdonom. Tarxum YUHOM, MOIHCE BUHUKHYMU HECTNANA GION06I0HUT KOMN T0MEPHUT CU-
cmem abo npobaemu 3 beanexoro. 3a60aKU yilh MeTHOA02EE NOGIIOMAEHHA EACKMPOHHOT NOWMU MONHCHE
weudko U eexmuero Npociyrosysamu Ha cmapmeonax, nideuwyrowu npodykmusnicms. Kpim mozo,
B0HA MONHCE BUKOPUCTIOBYBANUCL OAL JOTLOMO2YU AH00AM 13 6GJaAMU 30DY, W00, HANPUKAGD, BMICT eKPa-
HA Mi2 GBTNOMATIUYHO YUMAMUCA 82040C 0Af He3pAw020 Kopucmyeaya. Cvozodni nobymosa mernika,
AK-0M MYABTNUBAPKYU, MAKOHC MONCE BUKOPUCTNOBYEAMU U0 CUCTNEMY OAA YUMAHHA KYATHAPHUL pele-
nmie, asmomobini 0As 2040C06801 HABI2a Ul 00 MICUs NPUSHAYEHHSA, AOO 0COOU HK BUBMANOMD MOBY, —
O0AA HABYAHHA BUMOBU. [eHepayia Mo8U € NPOMUAENHCHON NPOOAEMOIO ABMOMAMUYHOZ0 PO3NIZHABAH-
na moeu (ASR) i docaidocyemoca 3 dpyeot nososunu X VIII cmonimma. Kpim mozo, ua mexnonozis
MaKootc donomazae A00AM 13 6adaMU 20A0CY 3HATUMU CNOCIO CNIAKYBAHHA 3 THWUMY, TMO HE DPO3YMIE
Mo8u ocecmis. Odnax ichye npobaema, No08’a3aHa 3 Mum, W0 Yacmoma Juckpemuaayii 36yxy € dyoice
BUCOKO10, W0 NPu3sodums do dysice do62ux NOCAIOBHOCTEN, AKI 00YUCAIOBAADHO BANHCKO 3MOOENEA-
mu. JIpyea npobaema noss2ae 6 MOMY, WO MOGHE CUZHAAU 3 00HAKOBUM CEMAHMUYHUM 3HAYEHHAM
MOHCYMB OYMU NPeICaABAEH] BEAUKON KIADKICTNN CUZHAAIE 30 3HAUHONW MIHAUBICTNIO, AKG CHPUNUHE-
HO KGHAAOM NePedasaHHs JGHUL, 8UMO060t0 aO0 Tapaxmepucmukamy membpy mosus. Llo6 nodoramu
Ui NPobAEMU, MU HABUAEMO MOJeAb asmoenkodepa, w0l duckpemusysamu be3nepepenud aydiocuznan
Y CKiHUEeHHUT Habip OUCKPUMIHAMUSHUT aYJi0MOKEeHI8, AKI MAIOMb HUNCUY %aACMOmY JUCKPemu3ayii.
ITicas yvozo, asmopezpecusti Modei, AKL He 3aALAHCaAmMd 610 MEKCMY, HABHAMbCA HA YUT PENPEIEHMA-
yiazr, wob nepedbawumu HacmynHul MoKeH Ha 0CHO6T nonepedHiz esemenmis nocaidoenocmi. Omoice,
yeti nidxid do ModearsarHa Haz2adye a8MOoOpPezPecUusHe MOJEABAHHA MOBU. Y HAWOMY J0CAIOHCEHHT MU
NOKA3YEMO, W0, Ha GI0MIHY 6id opuzinaabhol pobomu MEGA, mpaduyitinuti mexanism nepesepuye me-
TOAHIZM 3 PYTOMUM CEPEOHIM, UL NOKAZYE, WO OCMAHHIT UE He € CMADIAbHUM Ma NOMPEOYE PEMEALHOT
ONMUMI3AULE 2INEPNAPAMEMPIE.

Kirro4doBi cjoBa: ay1ioMOIe I0BaHHs, IITYYHI HEHPOHHI MepexKi, MexaHi3M yBaru.
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