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SPEECH AUDIO MODELING BY MEANS OF CAUSAL

MOVING AVERAGE EQUIPPED GATED ATTENTION

In the paper we compare di�erent attention mechanisms on the task of audio generation using un-
supervised approaches following previous work in language modeling. It is important problem, as far as
speech synthesis technology could be used to convert textual information into acoustic waveform signals.
These representations can be conveniently integrated into mobile devices and used in such applications
as voice messengers or email apps. Sometimes it is di�cult to understand and read important messages
when being abroad. The lack of appropriate computer systems or some security problems may arise.
With this technology, e-mail messages can be listened quickly and e�ciently on smartphones, boosting
productivity. Apart from that, it is used to assist visually impaired people, so that, for instance, the
screen content can be automatically read aloud to a blind user. Nowadays, home appliances, like slow
cookers can use this system too for reading culinary recipes, automobiles for voice navigation to the
destination spot, or language learners for pronunciation teaching. Speech generation is the opposite
problem of automatic speech recognition (ASR) and is researched since the second half of the eighteen's
century. Also, this technology also helps vocally handicapped people �nd a way to communicate with
others who do not understand sign language. However, there is a problem, related to the fact that the
audio sampling rate is very high, thus leading to very long sequences which are computationally di�cult
to model. Second challenge is that speech signals with the same semantic meaning can be represented by
a lot of signals with signi�cant variability, which is caused by channel environment, pronunciation or
speaker timbre characteristics. To overcome these problems, we train an autoencoder model to discretize
continuous audio signal into a �nite set of discriminative audio tokens which have a lower sampling
rate. Subsequently, autoregressive models, which are not conditioned on text, are trained on this rep-
resentation space to predict the next token, based on previous sequence elements. Hence, this modeling
approach resembles causal language modeling. In our study, we show that unlike in the original MEGA
work, traditional attention outperforms moving average equipped gated attention, which shows that EMA
gated attention is not stable yet and requires careful hyper-parameter optimization.
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Introduction

Audio signals consists of several abstraction
layers. For example, speech audio can be analyzed
at a very �ne-grained acoustic or text level but also
in terms of speaking style, syntax, grammar, or se-
mantics. Music and singing also have a long-term
structure, while being composed of complex non-
periodic acoustic signals. In the case of audio syn-
thesis and generation, these multiple abstraction
layers interact in such a way that getting high au-
dio quality while demonstrating good consistency
level remains a challenge, in particular in unsuper-
vised training scenarios. Latest audio generation
models have reached nearly genuine signal quality
by using methods such as auto-regressive waveform
modeling, adversarial training, �ow[1] or di�usion
models[2].

During the recent years audio generation qual-
ity signi�cantly developed, mainly attributed to
the introduction of cost functions that outperforms
basic audio time-domain regression. In particular,

WaveNet [3] introduced an autoregressive gener-
ation approach to audio generation, with quality
that was signi�cantly better than traditional con-
catenative and parametric methods at the cost of
slow inference. While WaveNet was a good basel-
ing for more computationally e�cient models such
as WaveRNN [4] or parallel WaveNet [5], a signif-
icant paradigm shift happened with the introduc-
tion of adversarial audio synthesis [6; 7], which en-
abled high �delity generation without any autore-
gressive component. Moreover, combining such
high-quality generation systems with di�erentiable
vector quantization [8; 9], made possible to train
jointly neural audio codecs by compressing acti-
vations in a bottleneck layer. In this work, it
was used tokens produced by a VQ-VAE neural
codec [8], not as intermediate features for signal
reconstruction, but rather as ground truth for a
sequence modeling task operating at a lower frame
rate, which can be reverted back to audio spectro-
gram at the original frame rate.
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Figure 1. VQ-Vae architecture

Theoretical Background

Discrete audio representation. It is a com-
mon technique to discretize image or audio signal
using an autoencoder with vector quantization as
in VQ-VAE [8]. The main idea is to map the en-
codur output vectors to the nearest codebook vec-
tor e. Subsequently, mapped codebook vectors are
passed to the decoder. Training objective is the
following:

L = log p(x|zq(x)) + β∥ze(x)− sg[e]∥22

where sg is the stopgradient operator which is an
identity at forward pass time and has zero gradi-
ent, thus e�ectively constraining its parameter to
be a constant variable. The decoder optimises the
�rst loss term only, the encoder optimises the �rst
and the second loss terms. Autoencoder architec-
ture can be seen in the Figure 1.

Self Attention mechanism. Traditional
self-atteòtion mechanism is the following function:

Y = Attention(X) = f(
QKT

√
dk

)V, (1)

where X = (x1, ..., xn) is the input sequence
with length n, Attention : Rn×d → Rn×d is the
self-attention function and dk is the input dimen-
sionality. It is also assumed that input and outputs
sequences have the same length.

Q = XWq + bq,

K = XWk + bk,

V = XWv + bv

are the sequences of queries, keys and values, with
learnable parameters Wq, Wk, Wv ∈ Rd×d, and
bq, bk, bv ∈ Rd. f(·) is an activation function, e.g.
the softmax function.

The matrix A = f(QKT

dk
) ∈ Rn×n is called

the attention matrix, as it speci�es the weight of

the dependency strength between every pair of to-
kens in X. Since it models pairwise dependency
weights, the matrix A in principle delivers a �exi-
ble and powerful mechanism to learn long-distance
dependencies with minimal inductive biases. How-
ever, it is in practice a complex task to detect
all the relationship patterns in A directly from
data, especially when working with long sequences.
Also, computing A with h attention heads takes
O(hn2) space and time, and the quadratic depen-
dency on sequence length becomes a signi�cant
bottleneck.

Moving Average Equipped Gated Atten-

tion. The gated attention mechanism in Mega[10]
uses Gated Recurrent Unit and Gated Attention
Unit (GAU)[11] as a backbone. Firstly, shared rep-
resentation is computed

X ′ = EMA(X) = α⊙ xt + (1− α)⊙ yt−1 (2)

Z = ϕsilu(X
′Wz + bz) (3)

where X ′ is the contextual input and Z is the
shared context with z dimensions, with projection
matrix Wz ∈ Rd×z and bias term bz ∈ Rz.

Similar to GAU, the query and key represen-
tations are computed by using element-wise mul-
tipliers and o�sets to Z, and the value sequence is
from the original X:

Q = κq ⊙ Z + µq ∈ Rn×z (4)

K = κk ⊙ Z + µk ∈ Rn×z (5)

V = ϕsilu(XWv + bv) ∈ Rn×v (6)

where κq, µq, κk, µk ∈ Rz are the learnable scalars
and o�sets of queries and keys, respectively. v is
the expanded intermediate dimension for the value
sequence. The output of attention is computed as
follows:

O = f

(
QKT

τ(X)
+ brel

)
V ∈ Rn×v. (7)
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where τ(X) is a scaling factor which was set to dk.
In the expression the term brel ∈ Rn×n is the

relative positional bias.
Subsequently,Mega introduces the reset γ and

update φ gates, and computes the candidate acti-
vation output Ĥ:

γ = ϕsilu(X
′Wγ + bγ) ∈ Rn×v

φ = ϕsigmoid(X
′Wφ + bφ) ∈ Rn×d

Ĥ = ϕsilu(X
′Wh + (γ ⊙O)Uh + bh) ∈ Rn×d

The �nal output Y is computed with the update
gate φ:

Y = φ⊙ Ĥ + (1− φ)⊙X ∈ Rn×d (8)

Numerical Experiment

Firstly, VQ-VAE model was pretrained on LJ-
Speech dataset in order to obtain discrete audio
representation. The input are mel spectrograms.
This yields latent space 4x smaller that the origi-
nal spectrogram. It consists of one dimensional se-
quence of discrete points which is 512-dimensional
vectors. There are 8192 discrete codebook vectors
in total.

Subsequently, two autoregressive models were
trained on the latent representations. The �rst
model is the traditional transformer decoder with
causal self attention, resembling GPT [12]. The
second model is transformer with EMA gated at-
tention. Both model were trained to maximize the
following objective:

L =
∑
x,y

logP (y|x1, ..., xm).

Model sizes are the same, which is approxi-
mately 23.5 million parameters, as well as other

hyper-parameters. The loss curves are show on
the Figure 2.

Figure 2. Auto-regressive train losses. Pink curve:

EMA Gated Attention, blue curve: traditional

transformer

As can be seen, transformer model with tradi-
tional attention mechanism performs better, how-
ever EMA Gated transformer converges much
faster.

Conclusion

In this work, it was conducted experiment to
compare di�erent attention mechanisms on the dis-
crete speech representation. It can be concluded
that traditional self-attention performs better, al-
though the model based on EMA gated atten-
tion converges much faster. It shows, that EMA
gated attention mechanism is not robust and stable
yet, and probably requires careful hyper-parameter
tuning.
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Iâàíþê À. Î.

ÌÎÂÍÅ ÌÎÄÅËÞÂÀÍÍß ÀÓÄIÎ Ç ÄÎÏÎÌÎÃÎÞ

ÌÅÕÀÍIÇÌÓ ÓÂÀÃÈ Ç ÐÓÕÎÌÈÌ ÑÅÐÅÄÍIÌ

Ó öié ðîáîòi ìè ïîðiâíþ¹ìî ðiçíi ìåõàíiçìè óâàãè íà ïðèêëàäi çàäà÷i ãåíåðàöi¨ àóäiî, âèêîðè-
ñòîâóþ÷è ïiäõîäè ¾íàâ÷àííÿ áåç â÷èòåëÿ¿, áåðó÷è çà îñíîâó ïîïåðåäíi äîñëiäæåííÿ â ìîäåëþâàí-
íi ìîâè. Öå âàæëèâà ïðîáëåìà, îñêiëüêè òåõíîëîãiþ ñèíòåçó ìîâè ìîæíà âèêîðèñòîâóâàòè äëÿ
êîíâåðòàöi¨ òåêñòîâî¨ iíôîðìàöi¨ â çâóêîâi ñèãíàëè. Òàêå ïðåäñòàâëåííÿ ìîæíà çðó÷íî iíòå-
ãðóâàòè â ìîáiëüíi ïðèñòðî¨ òà âèêîðèñòîâóâàòè â òàêèõ ïðîãðàìàõ, ÿê ãîëîñîâi ìåñåíäæåðè
àáî ïðîãðàìè åëåêòðîííî¨ ïîøòè. Iíîäi âàæêî çðîçóìiòè òà ïðî÷èòàòè âàæëèâi ïîâiäîìëåííÿ,
ïåðåáóâàþ÷è çà êîðäîíîì. Òàêèì ÷èíîì, ìîæå âèíèêíóòè íåñòà÷à âiäïîâiäíèõ êîìï'þòåðíèõ ñè-
ñòåì àáî ïðîáëåìè ç áåçïåêîþ. Çàâäÿêè öié òåõíîëîãi¨ ïîâiäîìëåííÿ åëåêòðîííî¨ ïîøòè ìîæíà
øâèäêî é åôåêòèâíî ïðîñëóõîâóâàòè íà ñìàðòôîíàõ, ïiäâèùóþ÷è ïðîäóêòèâíiñòü. Êðiì òîãî,
âîíà ìîæå âèêîðèñòîâóâàòèñü äëÿ äîïîìîãè ëþäÿì iç âàäàìè çîðó, ùîá, íàïðèêëàä, âìiñò åêðà-
íà ìiã àâòîìàòè÷íî ÷èòàòèñÿ âãîëîñ äëÿ íåçðÿ÷îãî êîðèñòóâà÷à. Ñüîãîäíi ïîáóòîâà òåõíiêà,
ÿê-îò ìóëüòèâàðêè, òàêîæ ìîæå âèêîðèñòîâóâàòè öþ ñèñòåìó äëÿ ÷èòàííÿ êóëiíàðíèõ ðåöå-
ïòiâ, àâòîìîáiëi äëÿ ãîëîñîâî¨ íàâiãàöi¨ äî ìiñöÿ ïðèçíà÷åííÿ, àáî îñîáè ÿêi âèâ÷àþòü ìîâó, �
äëÿ íàâ÷àííÿ âèìîâè. Ãåíåðàöiÿ ìîâè ¹ ïðîòèëåæíîþ ïðîáëåìîþ àâòîìàòè÷íîãî ðîçïiçíàâàí-
íÿ ìîâè (ASR) i äîñëiäæó¹òüñÿ ç äðóãî¨ ïîëîâèíè XVIII ñòîëiòòÿ. Êðiì òîãî, öÿ òåõíîëîãiÿ
òàêîæ äîïîìàãà¹ ëþäÿì iç âàäàìè ãîëîñó çíàéòè ñïîñiá ñïiëêóâàííÿ ç iíøèìè, õòî íå ðîçóìi¹
ìîâè æåñòiâ. Îäíàê iñíó¹ ïðîáëåìà, ïîâ'ÿçàíà ç òèì, ùî ÷àñòîòà äèñêðåòèçàöi¨ çâóêó ¹ äóæå
âèñîêîþ, ùî ïðèçâîäèòü äî äóæå äîâãèõ ïîñëiäîâíîñòåé, ÿêi îá÷èñëþâàëüíî âàæêî çìîäåëþâà-
òè. Äðóãà ïðîáëåìà ïîëÿãà¹ â òîìó, ùî ìîâíi ñèãíàëè ç îäíàêîâèì ñåìàíòè÷íèì çíà÷åííÿì
ìîæóòü áóòè ïðåäñòàâëåíi âåëèêîþ êiëüêiñòþ ñèãíàëiâ çi çíà÷íîþ ìiíëèâiñòþ, ÿêà ñïðè÷èíå-
íà êàíàëîì ïåðåäàâàííÿ äàíèõ, âèìîâîþ àáî õàðàêòåðèñòèêàìè òåìáðó ìîâöÿ. Ùîá ïîäîëàòè
öi ïðîáëåìè, ìè íàâ÷à¹ìî ìîäåëü àâòîåíêîäåðà, ùîá äèñêðåòèçóâàòè áåçïåðåðâíèé àóäiîñèãíàë
ó ñêií÷åííèé íàáið äèñêðèìiíàòèâíèõ àóäiîòîêåíiâ, ÿêi ìàþòü íèæ÷ó ÷àñòîòó äèñêðåòèçàöi¨.
Ïiñëÿ öüîãî, àâòîðåãðåñèâíi ìîäåëi, ÿêi íå çàëåæàòü âiä òåêñòó, íàâ÷àþòüñÿ íà öèõ ðåïðåçåíòà-
öiÿõ, ùîá ïåðåäáà÷èòè íàñòóïíèé òîêåí íà îñíîâi ïîïåðåäíiõ åëåìåíòiâ ïîñëiäîâíîñòi. Îòæå,
öåé ïiäõiä äî ìîäåëþâàííÿ íàãàäó¹ àâòîðåãðåñèâíå ìîäåëþâàííÿ ìîâè. Ó íàøîìó äîñëiäæåííi ìè
ïîêàçó¹ìî, ùî, íà âiäìiíó âiä îðèãiíàëüíî¨ ðîáîòè MEGA, òðàäèöiéíèé ìåõàíiçì ïåðåâåðøó¹ ìå-
õàíiçì ç ðóõîìèì ñåðåäíiì, ùî ïîêàçó¹, ùî îñòàííié ùå íå ¹ ñòàáiëüíèì òà ïîòðåáó¹ ðåòåëüíî¨
îïòèìiçàöi¨ ãiïåðïàðàìåòðiâ.
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