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WEAKLY NONLINEAR MODELS OF STOCHASTIC WAVE
PROPAGATION IN TWO-LAYER HYDRODYNAMIC
SYSTEMS

The paper discusses three-dimensional models of the propagation of stochastic internal waves in
hydrodynamic systems: ’half-space - half-space’, ’half-space - layer with rigid lid’, and ‘layer with solid
bottom - layer with rigid lid’. In constructing the models, the layers are considered to be ideal fluids
separated by a contact surface. The main objective of the modeling is to obtain a dynamic equation for the
stochastic amplitude of surface waves. A comparative analysis of the obtained results has been conducted.
In order to control the contribution of nonlinear terms, a dimensionless non-numerical parameter has
been introduced. The models are distinguished by boundary conditions that determine the general form
of solutions. As a result, a dynamic equation for the stochastic amplitude of internal waves has been
derived. After ensemble averaging of the amplitudes, the dynamic equation is formulated in integral form
using Fourier-Stieltjes integrals. The dynamic equation reveals two-wave and three-wave interactions,
as well as the contribution of dispersion to wave dynamics. An investigation of the boundary case of the
transition of internal waves in the ’half-space - half-space’ system to surface waves in the absence of an
upper liquid layer confirms the validity of the results.

Keywords: stochastic waves, internal waves, wave propagation models.

Introduction

Practical interest in studying wave motions
is driven by modern needs for developing new
wave suppression methods, energy generation ap-
proaches, and the design of new types of water
transport. Experimental and theoretical research
on wave motions is conducted in many countries
worldwide, including Sweden, Norway, Australia,
Denmark, the USA, Japan, the UK, and China.
With the advancement of modern mathematical
modelling tools, particular attention is paid to the
significant interest in studying random waves when
addressing various applied problems, notably in
hydromechanics. The relevance of researching ran-
dom wave motions is also justified by the fact that
such waves provide a mathematically sound ap-
proximation of real wave processes occurring on
the surface and within the water layer. Investi-
gating random waves in a two-layered fluid offers
deeper insights into the mechanisms of internal
wave propagation.

A brief overview of scientific research in the
field of modelling stochastic wave motions in lay-
ered hydrodynamic media is presented below.

Stochastic fluid models are employed for control
and optimization purposes in communication net-
works, particularly in admission control scenarios.
The study derives gradient estimators for perfor-
mance metrics related to packet loss and workload
concerning these threshold parameters (G. Chris-
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tos et all, 2002) [1]. The practical utility of these
stochastic fluid models-based estimators is exem-
plified in admission control problems, using data
derived from an operational system for evaluation.

Two versatile stochastic models are presented
in the article (G. Lindgren et all, 2010) [2] for sim-
ulating 2D and 3D ocean waves, offering the poten-
tial to replicate extreme and spatially varying sea
states. The first model encompasses generalized
Lagrange models governing the motion of individ-
ual water particles. The second one is a random
field model generated through a nested stochastic
partial differential equation, it can be adapted to
non-uniform sea conditions and offers approxima-
tions to conventional wave spectra.

The study [C.F. Naa et all, 2011) [3] introduces
a novel enhancement to the moving particle semi-
implicit method. The primary aim of this enhance-
ment is to counteract energy loss attributable to
numerical dissipation inherent in the conventional
moving particle semi-implicit method, which leads
to the rapid decay of waves. The analysis proves
efficient in determining wave parameters, and it
is observed that the stochastic enhancement pro-
longs the persistence of waves compared to the ba-
sic method.

The article (M.G. Brown, C. Lu, 2015) [4]
shows that by cross-correlating time series data
of seemingly random waves recorded at two dif-
ferent points, it becomes possible to estimate the
Green’s function that characterizes the wave prop-
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agation from one location to another. This study
delves into the theoretical framework of random
surface gravity wave interferometry, provides prac-
tical demonstrations through numerical simula-
tions, and explores the concept experimentally us-
ing data collected from both wavetank and ocean
wave measurements.

Altomare C. at all introduce a comprehen-
sive implementation of wave generation and active
wave absorption techniques for second-order long-
crested monochromatic and random waves within
a WCSPH-based (Weakly Compressible Smoothed
Particle Hydrodynamics) model. The open-source
software DualSPHysics is employed for this pur-
pose. The second-order wave generation system,
capable of producing both monochromatic (regu-
lar) and random (irregular) waves, is integrated
with passive and active wave absorption mech-
anisms. A damping system is defined for pas-
sive absorption to prevent wave reflection from
fixed boundaries within the numerical setup (C.
Altomare at all, 2017) [5].

Wang Y.G. proposes a new methodology to
predict the wave height and period joint distribu-
tions by utilizing a transformed linear simulation
method. The proposed transformed linear simu-
lation method is based on a Hermite transforma-
tion model where the transformation is chosen to
be a monotonic cubic polynomial, calibrated such
that the first four moments of the transformed
model match the moments of the true process
(Y.G. Wang , 2017) [6].

Utilizing the linear random wave solutions
found within water wave equations applicable to
finite water depths, a theoretical statistical model
for the drift induced by waves is formulated by
Song J., He H. and Cao A. . A straightforward
scenario of a wind-generated sea is examined, and
the parameters are computed for common wind ve-
locities and water depths using the Phillips spec-
trum. The study explores the characteristics of the
distribution and scrutinizes how variations in wind
speed and water depth impact this distribution (J.
Song et all, 2018) [7].

Multiscale, multi-physics uncertainty in wave-
current interaction is the focus of the article of
Darryl D. Holm . To incorporate uncertainty into
wave-current interaction models, the stochastic el-
ements were introduced into the wave dynamics
of two well-established models: the generalized
Lagrangian mean model and the Craik-Leibovich
model (D.H. Darryl , 2021) [8].

Statement of the problem for three
two-layer models

We investigate the problem of internal wave
propagation in three hydrodynamic systems:
"half-space - half-space", "half-space - layer with
rigid 1id", and "layer with solid bottom - layer with
rigid lid". In each system the low area {2; has
density p; and the upper area 2o has density ps.
The areas 2; and 25 are separated by a contact
surface z = n(z,y,t). The gravitational force is di-
rected perpendicular to the interface surface in the
negative z-direction, and the fluids are considered
incompressible.

The mathematical statement of the three prob-
lems are provided below.

The velocity of wave packet propagation in the
areas (7 and €, is expressed through the gradients
of potentials and must satisfy the equation:

P1ae + P1yy + @122 =0, (1)

V2,20 + P2,y + P2,22 =0, (2)

kinematic conditions at the interface surface
z=n(z,y,1):

Nt + Qp1.2Me + @P1yNy = P1,2, (3)

Nt + QP27 + P2y y = 2.2, (4)

dynamic condition at the interface surface z =
=n(z,y,t):

[0
pre = poos+ (L=pn+ (Vo) + (5)
«
+ §P(V¢2)2 - (777961 + 777yy) =0,

the boundary conditions for the systems take
the form:
"half-space - half-space"

v1,, =0 as z— —oo, (6)

w2, =0 as z— oo, (7)

"half-space - layer with rigid lid"

v1,, =0 as z— —oo, (8)

w2,=0 as z=h, 9)

"layer with solid bottom - layer with rigid 1id"
(10)

(11)

where ¢; is the velocity potential in €;, 7 is the
interface surface elevation, p is the ratio of the den-
sity of the upper area to the density of the lower

Y1,z — 0 as z= —h1,

p2,=0 as z=ho,
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area, h is the thickness of the upper layer in the
system "half-space - layer with rigid lid" system,
hy and ho are the depths of the lower and upper
layers, respectively, in the system "layer with solid
bottom - layer with rigid lid". It’s important to
note that this problem formulation uses dimension-
less variables. Additionally, the parameter « is a
non-dimensional parameter introduced to account
for the contribution of nonlinear terms in subse-
quent transformations.

The process of the problems solving

The solutions to the three problems (1) - (5),
each of the problems with different boundary con-
ditions, will be sought in the form of Fourier-
Stieltjes integrals:

"half-space - half-space" with boundary condi-
tions (6) and (7):

o1 = [ Alwyexp(it + k2)da
2 = / B(q) exp(if — kz)dq, (12)
n= / C(q) exp(if)dq;

"half-space - layer with rigid lid" with bound-
ary conditions (8) and (9):

o1 = /A(q) exp(if + kz)dq,

o = / B(q) exp(i6) (exp(k(z — b))+
+ exp(—k(z — h))dq

n= / C(q) exp(if)dg;

(13)

"layer with solid bottom - layer with rigid lid"
with boundary conditions (10) and (11):

o1 = [ Ala)expt)(exp(k(z + )+
+ exp(—k(z + h1)))dq,

p2= [ Bla)exp(i6) (exp(h(z - o))+
+ exp(—k(z — h2)))da,

n= / C(q) exp(it)dq

(14)

where k = (k, ky) is a wave vector, k = k|, § =
= kyx + kyy — tw is a phase, A(q), B(q), C(q)
are the random amplitudes of the respective fields
that depend on q = (k,w). Integration in (12) -
(14) and subsequent formulas is carried out within
the set of real numbers (—oo; +00). In the follow-
ing steps, our task is to use (12) - (14) and the

formulations (1) - (11) to derive equations for the
random amplitude C(q).

Using the methodology described in (A. Ma-
suda et all, 1979) [9], we obtain a dynamic equa-
tion for the random amplitude C(q) for each of the
models in the form

- W(q)C(q) =

= a/fz(q, q,)C(q—q;)C(q,)dq, + (15)

+a2/ f3(a,4;92)C(a—q;—92)C(q;)C(qy)dq, dqy,

where the functions W(q), fo(q,q;) and
fs(a,dy,4q,) have the following forms for the dif-
ferent models:

"half-space - half-space"

w2
W(q) =——1+p)+ (1 —p+k?),
P

k
(1-p)
2

fa(a,qp) =

+ ww1 <k7k1> +W1(wl —UJ) <k1,k—k1> —

{w(w —wp) <k, k —ki>+

—w? —w? —I—wwl], (16)

f3(a,a5,ay) = (1 + pluws {(k%kz +2ki)

2k 2

(k,kk1)<k2,kk1>:|+

+

(14 pwwy [ (ki, ki + 2kso) _
2k 2

—(k,k—k2)<k1,k—k2>]+

PN C e
2 ko
I (w — wg)wl (kl,k - k2):| 4 (1 +p2)W1WQ %
ko, k — k
[1—<k1,k Kk, )M—I—
k2
ki, k—k
+(1- <ko,k—ko > )M}_
ky
1
_{ +p2)“1“2(1— < ki, ko >) (k1 + ko) —
(1+p)

5 (wiky + w2ks);
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"half-space - layer with rigid lid"

2
,%(1 + peth(kh)) + (1 — p+ k),

1-pn)
2

X |w(w —w1) <k, k —k; > cth(kh)+

W(q) =

fola,qp) =

+UJ1(W1 — w) < kl,k -k > Cth(klh)—

2

—w —w%+ww1+ww1<k,k1>},

(L+peth(kh)
2

o <wwz {(kzykz +2ky)

f3(a,q5,q0) =

k 2

— (k,k —k;) < ko, k — ki >]+

N (ki,kq + 2ks)
k 2

— (k,k—k;) <ky k—ky > ]+
n [W(kz,k—kl)cth(hh)—i—
2
(w— wo)wq

+ T(kl, k — kg) Cth(/ﬂgh)] +
1

+ wiws |:(1 < kl,k -k, >)><

ko k — k
X Mcth(klhw

k2
(k1,k — ko)

+(1—<k2,k—k2 >) i
1

Cth(k2h)j| —
— w1w2(17 < kl,kQ >) |:k'1 Cth(k’lh)+
+ ko cth(kgh)] — (Wiky + wiks) cth(kh)> ;

"layer with solid bottom - layer with rigid lid"

W(q) = —W—Q(cth(khl) + peth(khy))+

k
+ (1= p+k?),
Pl ar) = P (1)

X |w(w—w1) <k,k—k; > x

X Cth(k‘hl) Cth(k‘1h2) +wwy <k, ki >+
+(JJ1(UJ1 —UJ) <k, k—k; > x

x cth(kyhy) cth(khy — w? — w? + ww) |,

cth(khy) + pcth(kh
f3(q,qp,q0) = (k) 2'0 (kha)

wws [ (k2, ko + 2k1)
k 2

—(k,k—k1)<k2,k—k1>}+

wwi [ (k1, ki + 2ka)
k 2

—(k,k—k2)<k1,k—k2>}+

(w — w1)ws
ko
(w — wg)wl

k1

(ka,k — ky) cth(kyhy) cth(kyhg)+
(kl, k — kg) Cth(kghl) Cth(k2h2)+

[ |:(1— <k, k—ky >)><

(ko, k — k1)

X TCth(klhl)Cth(lﬂlhg)-’-
2
ki,k—k
4+ (1— < kg, k — ko >)¥x
1

X Cth(kzhl) Cth(kghg):| —
— wlwg(l— < ki, ko >)><

x | k1 cth(ky hl) Cth(k1h2)+

+ kg Cth(kghl) Cth(kghz):| —
— (w%kl + w%kg) Cth(khl) Cth(k‘hg)) .

In (16) - (18), the operator represents the co-
sine of the angle between the argument vectors.

The functions f2(q,q,) and f5(q,dq;,qy) satisfy

f2(a,q;) = fo(as,q),  fa(q,0) =0
f2la,a—q;) = fo(q, qy),
f2(q,q5,92) = fa(q, a2, 9),

(19)

which coincides with the previously obtained result
for the study of random surface waves (A. Masuda
et all, 1979) [9].

For further analysis of equation (15), we will
perform ensemble averaging using the methodol-
ogy described in (L.J. Tick, 1959) [10]. To do this,
we will write the expansion of C(q)

C(a) = Ci(a) + ala(q) + a’Cs(a) +... (20)

We will perform the averaging procedure according
to the rules
[Cr(@)Cr(a)] = Sud(a+ai),
[Ci(a)

)C
q)C1(a;)C1(as)] =0,
[C1(a)Ci(a;)Ci(az)Ci(as)] =

iy
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= S11(q)S11(q,)d(a + q;)d(ay + qz)+
+ 511(9)S11(a2)0(q + a3)0(qy +aa)+
+ S11(9)S11(a1)d(q + 93)d(aq; +q3).

Substituting (20) into (15), which is multiplied by
its conjugate C'(q), and using (21), we obtain the
equation:

W(q)S )Z/CWSH(QQSM((]—%W%_

~ Su(a) / F(a, )1 (ay)day, (22)

where

G(q7 ql) = 2(f2(q7 ql))27

2
F(q,q,) = _41(4]/02(2]’_(1;3)) -

- f3(q7 qi, _ql) - 2f3(qa q, ql)a

which coincides with the results obtained in (A.
Masuda et all, 1979) [9] for the problem of random
surface gravity wave motion. In (22), Si; repre-
sents the spectrum of the first harmonic of random
waves. Further, based on (22), equations describ-
ing free and trapped random internal gravity waves
can be derived.

Comparative analysis of the results

Analysing expressions (16) - (18), it is
worth noting that the functions f2(q,q;) and
f3(a,d;,q,) describe two-wave and three-wave in-
teractions, while the function W (q) represents the
contribution of dispersion to wave motion. There-
fore, by setting W(q) = 0, we obtain dispersion
relations for the propagation of internal waves, as
presented in the works ([I.T. Selezov et all, 2010)
[11] and (O.V. Avramenko et all, 2016) [12].

If we consider the "half-space - layer with rigid
lid" model in the limit where h — +o0o, then ex-
pressions (17) for W(aq), f2(q,q;) and f3(q,q;,qs)
converge to (16), confirming the validity of the
obtained results. For the "layer with solid bot-
tom - layer with rigid lid" model, in the case
where hy — —o0, the expressions (18) for two-wave
and three-wave interactions, as well as dispersion,
transform into the corresponding expressions (17)

for the "half-space - layer with rigid lid" model
(provided h = hy). However, in the "layer with
solid bottom - layer with rigid lid" model, if we
consider the limiting case where h; — —oo and
hs — 400, then for the functions W(q), f2(q,qy)
and f5(q,q;,q,) we obtain expressions (16). Also,
it can be added that in the "half-space to half-
space" model, when p = 0 (effectively having no
upper layer), the function f2(q,q;) coincides with
the analogous function for the surface wave model
on the contact surface of the half-space, as de-
scribed in (A. Masuda et all, 1979) [9]. Addition-
ally, the expression for the function f3(q,q;,qs)
differs by the term —#122 (1— < ky, ko >)(k1 +k2)
(V.I. Turtyryka, O.V. Avramenko, 2021) [13].

Conclusions and further developments

As a result of the research, a dynamic equations
for the random amplitude are obtained for the hy-
drodynamical systems: ’half-space - half-space’,
‘half-space - layer with rigid lid’, and ’layer with
solid bottom - layer with rigid lid’. For the three
systems under consideration, we derived a gen-
eral form of the dynamic equation using Fourier-
Stieltjes integrals. After averaging over ampli-
tudes, dynamic equations in the form of spec-
tra are derived. Analytical expressions describ-
ing two-wave and three-wave interactions are ob-
tained. Specific characteristics of the sub-integral
functions are identified for each case. An analysis
of the obtained expressions is conducted. Further,
numerical and analytical investigations of the ob-
tained dynamic equations are planned.

In the subsequent investigations, hydrody-
namic two-layer systems with a free surface and
three-layer systems bounded by a rigid lid will be
examined. It is anticipated that the presence of
the third layer and a free surface will lead to the
introduction of new terms in the dynamic equa-
tion. Furthermore, it will enable the investigation
of the interaction between internal and surface
waves, characterized in terms of two- and three-
wave interactions.
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CJIABKOHEJIIHIMTHI MOJEJII IIOIIINPEHHYI XBIJIb ¥V
ABOITAPOBUX I' TPO/INHAMIYHUX CUCTEMAX

Y pobomi po3zasaHymMO MPUBUMIPHE MOOEAT OWUPEHHA CTNOLACTNUNHUL SHYMPIUHIT TEUAL Y 210pO-
OUHAMINHUL CUCTNEMAT <NIBNPOCTID — NIBNPOCID», «NIGNPOCMIP — WaAP 3 KPUWKOIW», <ULaP 3 Meep-
oum Onwom — wap 3 xKpuwroros. Ilpu nobydosi modeseti wapu 66axHCANMBCA 10eANbHUMY DIOUHAMU,
poadisenumu noseprrero xkonmarmy. OcHosHa mema MOOJEABAHHA — OMPUMATIUY QUHAMIYHE DIGHAHHS
6I0HOCHO CMOTACTMUYHOL AMNATMYIU NOBEPTHESUT TéUAL. [locmanoeku 3aday 0rs ékaszanux modeneti
Hasedeno 6 0e3PO3MIPHOMY 6UAADL. AL KOHMPOAI 6HECKY HeaiHitinux dodankie eeedeHo OE3PO3MIP-
HUT HEWUCA08UT napamemp o. Mamemamuwha nocmanoska 3a0a4i 0aA 6KA3GHUL MOJesets MICTIUMbL
PIBHAHHA DYTY, KIHEMAMUYHY MG QUHAMIYHY YMOBU HA NOBEPTHI KOHMAKMY, YMOBU 3GMYLAGHHA HO
HECKIHYEHHOCT] TG YMOBY HENPOMIKAHHA HA OHI ma kKpuwyi. lis pisnux modesell 6i0PIBHAIOMDBCSH
2PAHUYHI YMOBU, AKI BUSHAUAOMY 362a4bHUT 6Uud P36 A3ki6. Po3e’asanna npoeodumovcs 6 mepminax
inmeepanie Pypve—Cmuamoveca. OmpPumaro JuHaAMIYHE PIBHAHHA 6IOHOCHO CTNOTACTNUNHOT AMNATMYOU
BHYMPIUHIT TEUND

-W(q)C(q) = /fz(q, q,)C(qa— ¢,)C(q,)dq, + 042//f3(‘1» 4,9)C(q— q; — 4,)C(q,)C(g2)dq dgs,,

de k = (ky, ky) — xzeuavosuis sexmop, k = |k|, 0 = kyx + kyy — tw — dasa , A(q), B(q), C(q) -
CMOTACMUNHE AMNATMYOU 810N06I0HUT NOAI6, AKi 3arencamv 610 q = (k,w). Pynxuii W(q), f2(q, ¢;)
ma f3(q, gy, @) ompumani das Koocnoi 3 mpoox modeaet. Ilican ycepeduenns no ancambaro amnaimyod
JuHaMIYHE PIBHAHHA HabYysae 6uzandy

W(q)S(q) =/M5u(q1)5u(q— q,)dq —Su(q)/F(q, q)511(q)day,

W(q)
de G(g. @) = 2(f2(¢- @), Fla.a)= —% — fs(@ @, —a) = 2f3(¢: 4, @),

Qynxuii f2(q,q;) ma f3(q,q, @;) onucyroms 060- i MPUTEUALOGT 63aEMO0TE Y 210POOUHAMINHOMY
cepedosuwyi. Buseaeno enecor ducnepcii y reusvosuli pyx. Poszasnymo eparnuvwni sunadku das docai-
dorcysanux modeseti, 8 AKUL 6OHU NEPET0AMDL 00HG 6 00HY. 30Kpema, 6 MOJesi «NieNPOCMIpP — NIBNPO-
CIIP» MPU NPAMYSAHHT WIALHOCTE 8EPTHBO20 WaAPY 00 HYyAs (Parmuuno 3a 61dCYMHOCTNG 6EPTHHOLO
wapy) 060T6UND06T 63aEMOTE AKICHO 3012a10MbCA 3 BUNAIKOM MOOEAT NOBEPTHEGUT TEUAD HA NOBEPLHI
Konmaxmy nienpocmopy. Ipu ybomy 0ri MPUTEUILOSUT 83aEMO0IT BUABAEHO HOBUT JOJAHOK.

Kurto4oBi cioBa: CTOXaCTUYHI XBUJIi, BHYTPINTHI XBUJIi, MOJE/] MOMMUPEHHST XBUJIb.
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