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FRACTIONAL CALCULUS AND ITS APPLICATION IN
FINANCIAL MATHEMATICS

Fractional calculus extends classical calculus by allowing differentiation and integration of non-integer
orders, providing valuable tools for analyzing complex systems. In this part of the paper we demonstrate
the main methods of fractional calculus, including Euler’s, Riemann-Liouville, and Caputo approaches.
The behavior of functions such as 𝑥𝑛, 𝑒𝜆𝑥, and sin(𝑥) is analyzed for fractional orders, demonstrating
how fractional differentiation results in varying patterns of growth and decay.

The second part explores the application of fractal derivatives in financial mathematics. We present
the use of the Riemann-Liouville derivative to model stock prices in illiquid markets, where the price of
an asset may remain unchanged for some time. For this, subdiffusion processes and a fractal integro-
differential equation with the Riemann-Liouville derivative are used. The idea of subdiffusion models is
to replace the calendar time 𝑡 in the risk-free bond motion and classical GBM by some stochastic process
𝐻𝑡, which represents a hitting time, which is interpreted as the first time at which 𝐺𝑡 hits the barrier 𝑡.

Next, we focus on the pricing of a European option when the underlying asset is illiquid. The option
price is found as a solution to a fractal Dupire integro-differential equation, in which the time derivative
is replaced by the Dzerbayshan– Caputo (D–K) derivative. The D–K derivative is a generalization of
the Caputo approach. The form of the D–K derivative depends on a random process 𝐺𝑡, called the
subordinate. We take a standard inverse Gaussian process with parameters (1,1) as the subordinate 𝐺𝑡

and formulate the Proposition about the form of the fractal Dupire equation for the chosen subordinate.
These approaches provide tools that allow the investor to take into account the illiquidity of the financial
markets.

Keywords: fractional calculus, Riemann-Liouville derivative, Euler’s approach, Riemann-Liouville
approach, Caputo‘s approach, subdiffusion, Dupire equation, Black-Scholes model, Partial Integro-
Differential Equations, Dzerbayshan–Caputo derivatives, subordinator.

Introduction

Differentiation and integration are fundamen-
tal concepts in mathematics that have been stud-
ied intensively for centuries. In its simplest form,
differentiation involves calculating the slope of a
function at a given point, while integration involves
finding the area under a curve. These concepts are
well known and have been thoroughly studied over
the years, leading to clear and well-known results
that are widely used in a wide variety of fields.

An interesting question is the existence of dif-
ferentiation and integration for fractional order,
the so-called fractional calculus. As explained in
[2], the classical derivative restricted by rate of
change falls short to describe many phenomena
that could not be constructed properly by inte-
ger order calculus encompassed by fractional calcu-
lus. Due to this fact, fractional derivatives are pro-
posed for capturing the past history as in the clas-
sical integration. Hence, both fractional deriva-

tive and integral have past memory making them
much more advantageous than classical counter-
parts. The history of fractional calculus can be
traced back to the work of Euler and Laplace in the
18th century. Later, other prominent mathemati-
cians such as Caputo, Liouville, and Riemann also
made significant contributions to the field. Over
the past few decades, this branch of mathematical
analysis has gained attention due to its significant
potential for applications in various fields includ-
ing physics, engineering, finance, and biology. The
main idea of fractional calculus is to extend the
concepts of differentiation and integration to func-
tions with non-integer orders. This allows for a
more accurate description of complex phenomena,
such as anomalous diffusion [7], viscoelasticity [11],
and fractal behaviour [12].

The purpose of this paper is to study ap-
proaches to fractional calculus, illustrate them by
visualizing the results in the Python programming
language and demonstrate how Dzerbayshan– Ca-
puto (D–C) derivative is used for option evaluat-
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ing. By achieving this goal, this study aims to fill
the gap in the existing literature on this topic and
provide a better understanding of the potential of
fractional calculus in financial mathematics.

The paper is organized as follows. The sec-
ond section consists of two subsections. In the
first subsection the comparison between classi-
cal and fractional calculus interpretations is dis-
cussed. Also we review the main approaches to
fractional calculus: Euler, Liouville, Riemann, and
Caputo. The second subsection focuses on the
Riemann–Liouville approach to fractional calculus.
This approach builds upon the Riemann method
and the Cauchy integral formula, allowing for the
generalization of integration to non-integer orders
using the Gamma function. The fractional in-
tegral is defined, and its important properties,
such as the additive property of fractional integrals
and the relationship between fractional integration
and differentiation, are discussed. The Riemann-
Liouville approach has a huge application in fi-
nancial mathematics and it is used for stock price
modeling on illiquid markets. The Caputo’s ap-
proach modifies the Riemann-Liouville definition
to simplify initial condition handling in fractional
differential equations, making it highly valuable
for real-world modeling. The updated approach
is known as Dzerbayshan–Caputo derivative intro-
duced later and is applied for option pricing on
illiquid markets. In the last subsection, we ex-
amine how the fractional order 𝛼 influences the
behavior of derivatives across the Euler, Caputo,
and Riemann-Liouville approaches. The behavior
of functions such as 𝑥𝑛, 𝑒𝜆𝑥, and sin(𝑥) is analyzed
for fractional orders, demonstrating how fractional
differentiation results in varying patterns of growth
and decay.

The third section is devoted to the applica-
tions of fractional calculus in financial mathemat-
ics, particularly for describing the dynamics of
the illiquid markets. Classical models, like Black-
Scholes, assumes that asset prices follow Brown-
ian motion, a process with independent and sta-
tionary increments. However, these models often
fail to account for the irregularities and memory
effects observed in illiquid markets, where asset
prices exhibit anomalous behaviors like stationar-
ity or jumps. In this context, fractional calculus
and subdifusive models which incorporate hitting
times and irregular trading activity provides a nat-
ural extension to incorporate such complexities, of-
fering a more accurate representation of the under-
lying dynamics of financial illiquid assets.

First, we mention the usual model of subdif-
fusion, which is the celebrated Fractional Fokker-

Planck equation (see for example [8]). This equa-
tion is based on the Riemann- Liouville fractional
derivative and describes the probability density
function 𝑤(𝑡) of the sub-diffusive stock process.
This theory fully detailed in the literature (see for
example [7], [6], [8]). The application of the Frac-
tional Fokker-Planck equation to the risk measur-
ing in financial mathematics you can find in [22].

After that we focus on the option pricing prob-
lem under subdiffusion. The main idea of subdif-
fusive is to replace calendar time 𝑡 by hitting time
𝐻𝑡, which interpreted as the first time at which
stochastic process (so called subordinator) 𝐺𝑡 hits
the barrier 𝑡. Initially for the option pricing under
subdiffusion was used the method of discounted
mathematical expectation of the payoff function
under risk-neutral measure (see for example [7],
[6], [23], [24]). A new method was proposed re-
cently by the Donaten and Leonenko (see [20]),
which uses a fractional Dupire equation with Dzer-
bayshan–Caputo derivatives for deriving the Euro-
pean call option.

In this study we just apply the idea of this ap-
proach for the standard IG process (SIG), which
simplifies the equation and recovers the fractional
Dupire form under specific conditions. It is note-
worthy that this approach was detailed for inverse
𝛼− stable and inverted Poisson processes in [20],
for inverse inversian Gaussian in [21], for Gamma
in [22].

Finally, we formulate the proposition about ap-
plication of the fractal Dupire PIDE in the case
of the SIG subordinator. By incorporating frac-
tional calculus, we have used for SIG a model that
captures the non-local and memory-dependent na-
ture of market dynamics, offering a more accurate
and flexible tool for pricing financial instruments
in such environments.

Interpretations and approaches to
fractional calculus

Main approaches to fractional calculus.
Fractional calculus is an extension of traditional
integral integration and differentiation. Similarly,
fractional exponents are an extension of integer ex-
ponents.

Integer calculus has clear and well-known phys-
ical and geometric interpretations. For example,
the geometric value of a first-order derivative at
some point 𝑥0 is equal to the tangent of the tan-
gent line to the graph of the function at the point
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with the abscissa 𝑥0 and is equal to the angular
coefficient of this tangent line.

In the case of differentiation and integration
of arbitrary order, there were no clear geometric
and physical interpretations for almost 300 years.
Eventually, however, interpretations were found.
In [10], the geometric interpretation is the so-called
‘shadows on the walls’, and the physical interpre-
tation is ‘shadows of the past’.

Here is an explanation of what exactly these
interpretations are. For example, the geometric
interpretation of fractional integration is to add a
third dimension to the standard pair 𝜏, 𝑓(𝜏). If 𝜏
is time, then the added dimension can be called a
‘deformed’ timescale. The physical or mechanical
interpretation of fractional calculus is to use two
types of time in calculations: cosmic and individ-
ual.

Since this paper is devoted more to the math-
ematical side of the issue, it is worth describing
the ‘shadows on the walls’ in a little more detail.
The geometric interpretation of the fractional in-
tegral is to display the so-called ‘fence’ on two
walls, as is clear from this sentence, fractional cal-
culus provides a third dimension for analysing a
function. Together with the ‘fence’, whose shape
changes according to the change of time 𝑡 from 0
to 𝑏, its shades on the walls also change, represent-
ing the right-handed Riemann-Liouville fractional
integral and the classical integral with a moving
lower bound. [10]

The history of fractional calculus starts from
the work of Euler and Laplace in the 18th century.
In 1730, Euler proposed a generalization of this
formula:

(𝑑𝑛𝑥𝑚)

(𝑑𝑥𝑛)
= 𝑚(𝑚− 1). . . (𝑚− 𝑛+ 1)𝑥(𝑚−𝑛)

Using the properties of the Gamma function:

Γ(𝑚+ 1) = 𝑚(𝑚− 1). . . (𝑚− 𝑛+ 1)Γ(𝑚− 𝑛+ 1)

he came up with the following formula:

(𝑑𝑛𝑥𝑚)

(𝑑𝑥𝑛)
=

Γ(𝑚+ 1)

Γ(𝑚− 𝑛+ 1)
𝑥(𝑚−𝑛)

This formula is very useful and easy to use for cal-
culating fractional differentials of functions of the
form 𝑓(𝑥) = 𝑥𝑎, where 𝑎 ∈ 𝑅. [9]

In the period from 1832 to 1855, Liouville pro-
posed three important definitions for fractional
calculus. In the first definition, using the ex-
ponential representation of the function 𝑓(𝑥) =

=
∑︀∞

𝑛=0 𝑐𝑛𝑒
𝑎𝑛𝑥, he generalized (𝑑𝑚𝑒𝑎𝑥)

(𝑑𝑥𝑛) = 𝑎𝑚𝑒𝑎𝑥

as:
𝑑𝑣𝑓(𝑥)

𝑑𝑥𝑣
=

∞∑︁
𝑛=0

𝑐𝑛𝑎
𝑣
𝑛𝑒

𝑎𝑛𝑥

Its second definition is a fractional integral [9]:∫︁ 𝜇

Φ(x)dx𝜇 =
1

(−1)𝜇Γ(𝜇)

∫︁ ∞

0

Φ(𝑥+ 𝛼)𝛼𝜇−1𝑑𝛼∫︁ 𝜇

Φ(x)dx𝜇 =
1

Γ(𝜇)

∫︁ ∞

0

Φ(𝑥− 𝛼)𝛼𝜇−1𝑑𝛼

By replacing 𝑥+ 𝛼 and 𝑥− 𝛼 with 𝜏 in the above
formulas, the following formulas were obtained:∫︁ 𝜇

Φ(x)dx𝜇 =
1

(−1)𝜇Γ(𝜇)

∫︁ ∞

𝑥

Φ(𝜏)(𝜏 − 𝑥)𝜇−1𝑑𝜏∫︁ 𝜇

Φ(x)dx𝜇 =
1

Γ(𝜇)

∫︁ ∞

𝑥

Φ(𝜏)(𝜏 − 𝑥)𝜇−1𝑑𝜏

The third definition is a fractional differential:

𝑑𝜇𝐹 (𝑥)

𝑑𝑥𝜇
=

(−1)𝜇

ℎ𝜇

(︁
𝐹 (𝑥)

𝜇

1
𝐹 (𝑥+ ℎ)+

+
𝜇(𝜇− 1)

1 · 2
𝐹 (𝑥+ 2ℎ)− · · ·

𝑑𝜇𝐹 (𝑥)

𝑑𝑥𝜇
=

1𝜇

ℎ𝜇

(︁
𝐹 (𝑥)

𝜇

1
𝐹 (𝑥− ℎ)+

+
𝜇(𝜇− 1)

1 · 2
𝐹 (𝑥− 2ℎ)− · · ·

From 1847 to 1876, Riemann proposed the other
definition of the fractional integral:

𝐷−𝑣𝑓(𝑥) =
1

Γ(𝑣)

∫︁ 𝑥

𝑐

(𝑥− 𝑡)𝑣−1𝑓(𝑡)𝑑𝑡+ 𝜓(𝑡)

The Riemann-Liouville definition is one of the two
most famous in the field of fractional calculus, it is
a combination of the previous two definitions: the
definition of the derivative of the Cauchy integral
formula and the Riemann definition.

𝑎𝐷
𝛼
𝑡 𝑓(𝑡) =

1

Γ(𝑛− 𝛼)

(︂
𝑑

𝑑𝑡

)︂𝑛 ∫︁ 𝑡

𝑎

𝑓(𝜏)𝑑𝜏

(𝑡− 𝜏)𝛼−𝑛+1

In this formula, 𝑛 is the so-called ‘ceiling’ of 𝛼,
which means that 𝑛 is the smallest integer greater
than the number whose ceiling it is, in our case
𝑛− 1 ≤ 𝛼 < 𝑛.[9]

Another well-known definition is Caputo’s def-
inition, created in 1967, and as mentioned earlier,
it is an improvement of the Riemann-Liouville def-
inition for the calculation of fractal equations. [9]

𝐶
𝑎𝐷

𝛼
𝑡 𝑓(𝑡) =

1

Γ(𝛼− 𝑛)

∫︁ 𝑡

𝛼

𝑓𝑛(𝜏)𝑑𝜏

(𝑡− 𝜏)𝛼+1−𝑛
,

(𝑛− 1 ≤ 𝛼 < 𝑛) (1)
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The Riemann–Liouville approach. The
Riemann–Liouville approach is based on the Rie-
mann approach and the Cauchy integral formula.

By using the Cauchy formula for repeated inte-
gration over parameters, we can calculate the an-
tiderivative 𝛼 of the function order several times,
which leads to the following formula:

𝐼𝛼𝑓 (𝑡) =
1

(𝛼− 1)!

∫︁ 𝑡

0

(𝑡− 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏

As mentioned in another section, the generalisa-
tion of the factorial is the so-called Gamma func-
tion. So, to improve the already obtained formula,
we will replace this factorial with the Gamma func-
tion, generalising the result.

𝐼𝛼𝑓 (𝑡) =
1

Γ (𝛼)

∫︁ 𝑡

0

(𝑡− 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝛼 > 0

This formula is a working formula for fractional in-
tegration. It is called the Riemann-Liouville left-
handed integral. This integral is considered one
of the easiest formulas to understand in the world
of fractional calculus. The main note is that 𝛼
can be a complex number due to the limitations of
the Gamma function, but always with a real part
greater than zero.

This integral has the following important de-
pendencies:

𝐼𝛼
(︀
𝐼𝛽𝑓

)︀
= 𝐼𝛼+𝛽𝑓

𝑑

𝑑𝑥
𝐼𝛼+1𝑓 = 𝐼𝛼𝑓

Unfortunately, we cannot simply say that a dif-
ferential of order 𝛼 will be equal to an integral of
order −𝛼. Due to the presence of the Gamma func-
tion in the Riemann-Liouville left-handed integral
formula, the use of negative order is not possible,
and hence it cannot be used to define a fractional
order differential.

To start converting an integral to a differential,
you should start with the fact that after differenti-
ating 𝑛 times, the integration will be equal to the
original function itself.

𝑑𝑛

𝑑𝑡𝑛
(𝐼𝑛𝑓 (𝑡)) = 𝑓 (𝑡)

This means that the derivative is the left-hand side
of the integral. However, the integral is not the
left-hand side of the derivative because the integral
adds an arbitrary constant. That is, in general, the
inverse of the previous property is not true. Un-
der this condition, we would still like to be able to
define differentiation through operations that are
understandable and possible. Such an operation,
which has the desired properties, would be:

𝐷𝛼𝑓 =
𝑑⌈𝛼⌉

𝑑𝑡⌈𝛼⌉
(𝐼⌈𝛼⌉−𝛼𝑓)

Here, ⌈𝛼⌉ is the ‘ceiling’ of 𝛼, the result of round-
ing the number to the next smallest integer greater
than the given number. Let’s write this record in
more detail:

𝑎𝐷
𝛼
𝑡 𝑓 (𝑡) =

1

Γ (𝑛− 𝛼)

(︂
𝑑

𝑑𝑡

)︂𝑛 ∫︁ 𝑡

𝑎

𝑓 (𝜏) 𝑑𝜏

(𝑡− 𝜏)
𝛼−𝑛+1 ,

(2)
where 𝑛 is the ceiling of 𝛼. This is the left-
handed Riemann-Liouville fractional derivative.
Most fractional calculations are long and compli-
cated, if not completely intractable, if performed
manually without the help of a computer.

Illustration of fractional calculus ap-
proaches to some basic functions. In this
subsection, we will illustrate and visualize the Eu-
ler, Riemann-Liouville, and Caputo approaches to
fractional calculus for some functions.

a) Euler’s approach.

𝑑𝑛𝑥𝑚

𝑑𝑥𝑛
=

Γ (𝑚+ 1)

Γ (𝑚− 𝑛+ 1)
𝑥𝑚−𝑛 (3)

The simplest example is the following function:

𝑓 (𝑥) = 1

for which:
𝑑𝛼1

𝑑𝑥𝛼
=

𝑥−𝛼

Γ (1− 𝛼)

In this case, we substitute 𝑚 = 0, 𝑛 = 𝛼, where
𝑎𝑙𝑝ℎ𝑎 is the order of differentiation, into the for-
mula (3). Using Python, we visualize the graphs
of the differentials of the function 𝑓 (𝑥) = 1 for the
following orders: 1

2 ,
3
2 , −

1
2 , −

3
2 .

Figure 1. Graphical representation of the fractional
differentials of the function 𝑓 (𝑥) = 1 using the

formula (3) in Python.
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In order to obtain Figure 1, the matplotlib
library was used to calculate the result of the
Gamma function, using the gamma() method,
which returns the value of the function depending
on the input x. Another example is solved below
for Euler’s formula, in this case the function has
the following form:

𝑓 (𝑥) = 𝑥

Let’s repeat the steps described above. In formula
(2), we will make the following substitutions: 𝑚 =
= 1, 𝑛 = 𝛼, where 𝛼 is again the order of differen-
tiation. After performing these steps, we will get
the following function:

𝑑𝛼𝑥

𝑑𝑥𝛼
=

𝑥1−𝛼

Γ (2− 𝛼)

Again using Python and its matplotlib library and
the gamma() method, we will calculate and dis-
play the graphs of the differentials of the following
function of orders: 1

2 ,
3
2 , −

1
2 , −

3
2 .

Figure 2. Graphical representation of the fractional
differentials of the function 𝑓 (𝑥) = 𝑥 using formula

(2) in Python.

As you can see from the previous examples, the
Euler approach is very convenient for calculating
fractional differentials of functions of a type:

𝑓 (𝑥) = 𝑥𝑛, 𝑛 ∈ 𝑄. Analyzing the graphs of
the derivative functions shown in Figures 1 and
2, we can draw the following conclusion: there is
no single law by which these functions are con-
structed. For example, for 𝛼 = 3/2𝑓(𝑥) = 1 will be
monotonic and strictly increasing, and for 𝑓(𝑥) =
= 𝑥 the fractional differential will give us a mono-
tonic strictly decreasing function. Similarly, for
𝛼 = 1/2, the function is strictly decreasing for
𝑓(𝑥) = 1 and strictly increasing for 𝑓(𝑥) = 𝑥.

While for the other two alphas, no such dynam-
ics is observed.

b) Caputo’s approach

At first glance, this approach (see (1)) seems overly
complicated and requires too many calculations.
However, according to Theorrm 5 of Maria Ishtev
[5], the differential of an exponential function is of
the form:

𝑓 (𝑥) = 𝑒𝜆𝑥

and after a number of transformations, it looks
like:

𝑑𝛼𝑒𝜆𝑥

𝑑𝑥𝛼
=

∞∑︁
𝑘=0

𝜆𝑘+𝑛𝑥𝑘+𝑛−𝛼

Γ (𝑘 + 1 + 𝑛− 𝛼)
=

𝜆𝑛𝑥𝑛−𝛼𝐸1,𝑛−𝛼+1, (4)

where 𝜆 ∈ 𝐶, 𝑛 − 1 < 𝛼 < 𝑛,𝛼 ∈ 𝑅,𝑛 ∈ 𝑁 . The
proof of this theorem is based on the generalised
Mittag-Lefler function for two parameters:

𝐸𝛼,𝛽 (𝑧) =

∞∑︁
𝑘=0

𝑧𝑘

Γ (𝛼𝑘 + 𝛽)
,

𝛼, 𝛽 > 0, 𝛼, 𝛽 ∈ 𝑅, 𝑧 ∈ 𝐶

and the facts from [5]:

𝐷𝛼
* 𝑓 (𝑡) = 𝐷𝛼𝑓 (𝑡)−

𝑛−1∑︁
𝑘=0

𝑡𝑘−𝛼

Γ (𝑘 + 1− 𝛼)
𝑓 (𝑘) (0),

𝑡 > 0, 𝛼 ∈ 𝑅, 𝑛− 1 < 𝛼 < 𝑛

and

𝐷𝛼𝑒𝜆𝑡 = 𝑡−𝛼𝐸1,1−𝛼(𝜆𝑡).

With this formula, we can already write solu-
tions for several examples. Let’s start with the
function:

𝑓 (𝑥) = 𝑒𝑥

Let’s use the formula (4) and get it:

𝑑𝛼𝑒𝑥

𝑑𝑥𝛼
=

∞∑︁
𝑘=0

𝑥𝑘+𝑛−𝛼

Γ (𝑘 + 𝑛+ 1− 𝛼)

Using WolframAlpha, we visualize graphs of order
differentials: 1

2 ,−
1
2 ,

3
2 , −

3
2 .
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Figure 3. Graphical representation of the fractional
differentials of the function 𝑓 (𝑥) = 𝑒𝑥 using the

formula (4), using WolframAlpha.

For the next example, let’s look at a function:

𝑓 (𝑥) = 𝑒2𝑥

Using the formula (4), we get the following differ-
ential function:

𝑑𝛼𝑒2𝑥

𝑑𝑥𝛼
=

∞∑︁
𝑘=0

2𝑘+𝑛𝑥𝑘+𝑛−𝛼

Γ (𝑘 + 𝑛+ 1− 𝛼)

Using WolframAlpha, we visualise graphs of order
differentials: 1

2 ,−
1
2 ,

3
2 , −

3
2 .

Figure 4. Graphical representation of the fractional
differentials of the function 𝑓 (𝑥) = 𝑒2𝑥 using the

formula (4) in WolframAlpha.

Analyzing the graphs of the derivative func-
tions shown in Figures 3 and 4, we can draw the
following conclusion: these functions have a clear
pattern. It can be noted that in both figures, the

graphs correspond to the behaviour of the integral
differential for functions of the form 𝑓 (𝑥) = 𝑒𝑛𝑥.
Thus, we see that the change in 𝛼 changes the y-
value of the point of intersection of the graphs with
the ordinate axis. The growth dynamics of the
graphs also has a single pattern that corresponds
to the whole number.

c) The Riemann-Liouville approach.

The application of the Riemann-Liouville formula
(2) requires numarical methods of calculation,
which is a separate complex task. It is also im-
portant to note that Python library for it has very
large limitations. This library contains methods
for calculating two approaches: Riemann-Liouville
and Grunwald-Letnikov.

Figure 5. A set of functions and their functionality
of the differint library.

Using this library, let’s give an example for a
trigonometric function:

𝑓 (𝑥) = sin(𝑥)

Let’s use the RL() function to calculate the order
differentials: 1

2 ,−
1
2 ,−

3
2 . And visualise the results

using the mathplotlib library:

Figure 6. Graphical representation of the fractional
differentials of the function 𝑓 (𝑥) = sin(𝑥) using the

(2) approach, using the Python library differint.
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Analyzing the graphs in Figure 6, we can only
note the monotonicity of each of the functions
shown on it. So for all three values of 𝛼 used,
the functions are increasing. However, we cannot
observe any single behaviour that would depend on
the order of differentiation and would correspond
to the behaviour of the function 𝑓 (𝑥) = sin(𝑥) in
the integer domain.

Fractional calculus in financial
mathematics: Option pricing for

subdiffusion model

In traditional financial markets, the Black-
Scholes model is widely used for option pricing(see
[4], [3]). However, in illiquid markets where trad-
ing delays and irregularities occur, classical diffu-
sion models often fall short. Subdiffusive mod-
els[1], which incorporate waiting times and irregu-
lar trading activity, offer a more accurate way to
represent such markets.

The idea of subdiffusion models is to replace
the calendar time 𝑡 in the risk-free bond motion
and classical GBM by some stochastic process 𝐻𝑡,
which represents a hitting time, defined as:

𝐻𝑡 = inf{𝜏 > 0 : 𝐺𝜏 ≥ 𝑡}. (5)

and interpreted as the first time at which 𝐺𝑡 hits
the barrier 𝑡. 𝐻𝑡 is positive, non-decreasing and
has all the properties to be used as a stochastic
clock. By construction, the inverted process may
be constant. Therefore, any process subordinated
by 𝐻𝑡 exhibits motionless periods.

The definition (5) of hitting time is based on
the use of some other random process called a sub-
ordinator 𝐺𝑡. The subordinator 𝐺𝑡 is generally a
non-decreasing stochastic process.

The usual model of subdiffusion is the cele-
brated Fractional Fokker-Planck equation (see for
example [8]). This equation describes the probabil-
ity density function 𝑤(𝑡) of the sub-diffusive stock
process:

𝜕𝑤

𝜕𝑡
= 𝑎𝐷

𝛼
𝑡

[︂
−𝜇 𝜕

𝜕𝑥
+
𝜎2

2

𝜕2

𝜕𝑥2

]︂
𝑤(𝑥, 𝑡), (6)

where 𝑎𝐷
𝛼
𝑡 𝑓 (𝑡) is is the left-handed Riemann-

Liouville fractional derivative (see sections above
and formula (2)). This application of the frac-
tional derivatives to the financial mathematics is
a quite important, but the more detailed consider-
ation of this problem is outside the framework of
this paper.

This study focuses on the option pricing prob-
lem under subdiffusion.

In the classical diffusion model, the fair price of
a European call option on an asset with price 𝑆𝑡

at time 𝑡 is provided by the Black-Scholes formula.
The alternative way to compute the fair price using
Dupire equation [15].

For the subdiffusive we derive the European call
price using a fractional Dupire equation with Dzer-
bayshan–Caputo derivatives[13].

For this aim we start with classical Dupire
equation and consider the case when 𝜎(𝑆𝑡, 𝑡) = 𝜎
is the constant. Then the Dupire equation has a
form

𝜕𝐶(𝑇,𝐾)

𝜕𝑇
+ 𝑟(𝑇 )𝐶 = 𝜇(𝑇 )𝐶−

−𝜇(𝑇 )𝐾 𝜕𝐶

𝜕𝐾
+

1

2
𝜎2𝐾2 𝜕

2𝐶

𝜕𝐾2
,

(7)

where 𝐶(𝑇,𝐾) is the option price at time 𝑇 with
strike price 𝐾, 𝑟(𝑇 ) is the risk-free rate, 𝜇(𝑇 ) =
= 𝑟(𝑇 ) + 𝑞(𝑇 ) is the drift, 𝑞(𝑇 ) = 0 is the contin-
uous dividend rate and 𝜎 is the volatility.

After that we input variable 𝑘 = ln𝐾. The
derivatives with respect to 𝐾 are then transformed
as follows:

𝜕

𝜕𝐾
=

1

𝐾

𝜕

𝜕𝑘
,

𝜕2

𝜕𝐾2
=

1

𝐾2

𝜕2

𝜕𝑘2

Substituting these expressions into the original
equation, we obtain the Dupire equation in terms
of 𝑘 = ln𝐾:

𝜕𝐶(𝑇, 𝑘)

𝜕𝑇
= −𝑟 𝜕𝐶(𝑇, 𝑘)

𝜕𝑘
+
𝜎2

2

𝜕2𝐶(𝑇, 𝑘)

𝜕𝑘2
. (8)

For the option pricing in subdiffusion model we
just replace the derivative for the time in the
Dupire equation by a Dzerbayshan–Caputo (D–C)
derivative (see [20], [13]). So, the fractional Dupire
PIDE has a form

Ψ𝐷𝐶𝐻(𝑇, 𝑘) = −𝑟 𝜕
𝜕𝑘
𝐶𝐻(𝑇, 𝑘) +

𝜎2

2

𝜕2

𝜕𝑘2
𝐶𝐻(𝑇, 𝑘),

where Ψ𝐷𝑢(𝑡) is the convolution-type derivative,
called the Dzerbayshan–Caputo (D–C) derivative.

The Dzerbashyan–Caputo derivative general-
izes the classical Caputo[14] derivative by incorpo-
rating a convolution kernel. This adaptation pro-
vides greater flexibility in modeling market behav-
ior influenced by memory effects and irregular tem-
poral dynamics. Specifically, it allows the model to
accurately capture the heavy-tailed waiting time
distributions and subdiffusive characteristics often
observed in illiquid markets. By combining frac-
tional calculus with the dynamics of Lévy subor-
dinators, this approach bridges the gap between
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theoretical models and observed market anomalies.
We focus on this derivative to better account for
the stochastic time changes driven by inverse sub-
ordinators, making it particularly well-suited for
subdiffusive option pricing.

The D–C derivative for a function 𝑢(𝑡) is given
by:

Ψ𝐷𝑢(𝑡) = 𝑏
𝑑

𝑑𝑡
𝑢(𝑡) +

∫︁ 𝑡

0

𝜕

𝜕𝑡
𝑢(𝑡− 𝑠)𝜈(𝑠)𝑑𝑠. (9)

Here, the function Ψ represents the Lévy expo-
nent associated with the subordinator 𝐺𝑡.

In this study, we use the Standard Inverse
Gaussian (SIG) process as the subordinator 𝐺𝑡.
Inverse Gaussian (IG) subordinator 𝐺𝑡 is a non-
decreasing Lévy process, where the increments
𝐺𝑡+𝑠−𝐺𝑠 follow the inverse Gaussian distribution
𝜚(𝛿𝑡, 𝛾) with probabilities density function (PDF):

𝑔(𝑥, 𝑡) =
𝛿𝑡√
2𝜋𝑥3

𝑒𝛿𝛾𝑡−(𝛿2𝑡2/𝑥+𝛾2𝑥)/2, 𝑥 > 0;

and with Lévy measure

𝜈(𝑑𝑥) =
𝛿√
2𝜋𝑥3

𝑒

(︁
− 𝛾2𝑥

2

)︁
𝑑𝑥, 𝑥 > 0, 𝑡 > 0. (10)

For 𝛾 = 𝛿 = 1 we have the standard 𝐼𝐺 distribu-
tion in the form

𝑓(𝑥, 𝑡) =
𝑡√
2𝜋𝑥3

𝑒

(︂
− (𝑥−𝑡)2

2𝑥

)︂
, 𝑥 > 0, 𝑡 > 0.

For a given subordinator 𝐺𝑡, its inverse, denoted
as 𝐻𝑡, is defined by the hitting time 𝐻𝑡 (5). The
density function ℎ(𝑥, 𝑡) of 𝐻𝑡 has an integral rep-
resentation [16] and for standard 𝐼𝐺 distribution
has a form:

ℎ(𝑥, 𝑡) =
1

𝜋
𝑒𝑥−

1
2

∫︁ ∞

0

𝑒−𝑡𝑦

𝑦 + 1
2

(sin (𝑥
√︀
2𝑦)+

+
√︀
2𝑦 cos (𝑥

√︀
2𝑦))𝑑𝑦.

The moments of 𝐻𝑡 can be numerically evalu-
ated using ℎ(𝑥, 𝑡), and explicit formulas for the first
and second moments were obtained via Laplace
transforms. Asymptotic behavior shows that for
large 𝑡 [17]:

𝐸(𝐻𝑡)∼

{︃ (︀
𝛾
𝛿

)︀
𝑡, 𝛾 > 0(︁

1
𝛿

√︁
2𝑡
𝜋

)︁
𝑡, 𝛾 = 0,

𝑉 𝑎𝑟(𝐻𝑡)∼
(︁𝛾
𝛿

)︁2

𝑡2.

For the standard case (𝛿 = 1, 𝛾 = 1), we have
𝐸(𝐻𝑡) ∼ 𝑡 and 𝑉 𝑎𝑟(𝐻𝑡) ∼ 𝑡2 and this fact ex-
plaines why we choose these parameters.

Thus we focus on standard inverse Gausian sub-
ordinator(see [18]) 𝐺𝑡 Its Lévy-Khintchine repre-
sentation can be written as:

Ψ(𝑥) =

∫︁ +∞

0

(1− 𝑒−𝑠𝑧)𝜈(𝑑𝑧),

where 𝜈 is the Lévy measure.

The Lévy measure for standard IG subordina-
tor will be:

𝜈(𝑑𝑧) =
1√
2𝜋𝑧3

𝑒−
𝑧
2 𝑑𝑧, 𝑧 > 0, , 𝑡 > 0. (11)

Thus, the integral kernel 𝜈(𝑠) in (11) is the integral
of 𝜈 over (𝑠,∞):

𝜈(𝑠) =

∫︁ +∞

𝑠

1√
2𝜋𝑧3

𝑒−
𝑧
2 𝑑𝑧 =

=
2𝑒−

𝑠
2

√
2𝜋𝑠

− erfc

(︂√
𝑠√
2

)︂
=

=
2𝑒−

𝑠
2

√
2𝜋𝑠

+ erf

(︂√
𝑠√
2

)︂
− 1

Here, erf(𝑥) denotes the error function, which
is related to the standard normal cumulative dis-
tribution function Φ(𝑥):

𝜈(𝑠) = 2Φ (𝑠)− 2 +
2𝑒−

𝑠
2

√
2𝜋𝑠

Then we can represent the D-C derivative as:

Ψ𝐷𝑢(𝑡) = 2

∫︁ 𝑡

0

𝜕

𝜕𝑡
𝑢(𝑡−𝑠)

(︂
Φ (𝑠)− 1 +

𝑒−
𝑠
2

√
2𝜋𝑠

)︂
𝑑𝑠.

Now, substituting this to (8), we obtain:∫︁ 𝑇

0

𝜕

𝜕𝑇
𝐶𝐻(𝑇 − 𝑠, 𝑘)

(︂
Φ
(︀√
𝑠
)︀
− 1 +

𝑒−
𝑠
2

√
2𝜋𝑠

)︂
𝑑𝑠 =

= −𝑟
2

𝜕

𝜕𝑘
𝐶𝐻(𝑇, 𝑘) +

𝜎2

4

𝜕2

𝜕𝑘2
𝐶𝐻(𝑇, 𝑘),

(12)

Thus we can state the following proposition.
Proposition 1. If the subordinator 𝐺𝑡 for the hit-
ting time (5) is the Standard Inverse Gaussian
(𝑆𝐼𝐺) process, the fair price 𝐶𝐻(𝑇, 𝑘) of the Eu-
ropean option with time to maturity 𝑇 and strike
price 𝐾 is the solution of the PIDE (12), where:

• Φ(𝑠) is the standard normal cumulative dis-
tribution function;

• 𝑟 is the risk-free rate;

• 𝜎 is the asset volatility,
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• 𝑘 = log𝐾.

It is worth noting, that the Dzherbashyan-
Caputo fractional derivative plays a crucial role in
this model cause it incorporates the nonlinear dy-
namics of the market, particularly the delays mod-
eled by the subordinator. The convolution kernel
of this derivative includes the function Φ(𝑠), which
captures heavy tails and the slow decay of the wait-
ing time distribution. This enables the model to
accurately reflect the behavior of illiquid markets
and pricing anomalies.
Remark 1. To solve the PIDE numerically, the
time 𝑇 and space 𝑘 variables are discretized into
grids with steps ∆𝑡 and ∆𝑘 (see [20]). The in-
tegral term is approximated using the trapezoidal
rule or quadrature, while the derivatives 𝜕

𝜕𝑘 and
𝜕2

𝜕𝑘2 are computed with finite difference methods.
An implicit time-stepping scheme is used for sta-
bility, with initial conditions 𝐶𝐻(0, 𝑘) = (𝑒𝑘−𝐾)+

+ and asymptotic boundary conditions applied at
𝑘 → ±∞. The equation is transformed into a sys-
tem of algebraic equations and solved iteratively
using numerical tools like Python or MATLAB,
ensuring accuracy and stability of the solution.
Another calculation algorithm was presented by
Omid Nikan et al [19].

Conclusion

Fractional calculus is a branch of mathematics
that extends classical calculus to allow differenti-
ation and integration of non-integer orders. This
study looks at the main methods of fractional cal-
culus: Euler’s, Riemann-Liouville, and Caputo ap-
proaches.

The study analyzes the functions 𝑥𝑛, 𝑒𝜆𝑥, and
sin(𝑥) for fractional orders like 1/2, −1/2, 3/2, and
−3/2. Euler’s method was used to find analytical
solutions for the functions 𝑓(𝑥) = 1 and 𝑓(𝑥) =
= 𝑥. The Riemann-Liouville method was applied
to the function 𝑓(𝑥) = sin(𝑥) using the Python
differint library. The graphs of the differentials
showed that the behavior of the functions changes
depending on the specific case, with no general pat-
tern across all cases. The graphs demonstrated

consistent trends of either growth or decay, similar
to what is observed in integer-order differentiation,
where different orders of differentiation lead to dif-
ferent behaviors.

The Caputo method was used on the functions
𝑓(𝑥) = 𝑒𝑥 and 𝑓(𝑥) = 𝑒2𝑥, with approximation
methods applied. Unlike the previous cases, the
fractional differentials for these functions followed
a consistent pattern, with the graphs behaving
similarly but differing only in the intersection point
with the y-axis, depending on the order of differ-
entiation.

In the Riemann-Liouville approach, the study
used the RL() function from the differint library
to calculate the fractional derivatives of the func-
tion 𝑓(𝑥) = sin(𝑥) for orders 1/2, −1/2, and −3/2.
The graphs of the resulting fractional derivatives
showed that all the functions exhibited monotonic
growth. However, there was no clear pattern that
could be attributed to the order of differentiation
in the same way as integer-order derivatives.

In financial modeling, the Riemann-Liouville
fractional derivative has been used to describe sub-
diffusive processes, improving the Black-Scholes
model by accounting for market features that tra-
ditional models don’t capture, such as irregular
trading and delays. By adding subdiffusion with
a fractional Partial Integro-Differential Equation
(PIDE) using the Dzerbayshan–Caputo derivative,
the model better reflects how asset prices move
by considering memory effects and subdiffusive be-
havior.

The study finds that subdiffusive models are
more accurate and sensitive, especially in captur-
ing market behaviors like periods of price stabil-
ity. However, these models are computationally
heavy and not suitable for real-time use by most
investors. While fractional calculus is a powerful
tool for modeling complex systems like fluids and
fractals, it requires a lot of computing power and
time. While these models are useful for specific
tasks, they are not necessary for general financial
applications. Therefore, developing simpler ap-
proximation methods remains an important area
of research. This study shows that fractional cal-
culus can improve financial modeling.
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Зубрiцька Д. Є., Щестюк Н. Ю., Случинський Д. Ю.

ФРАКЦIЙНЕ ЧИСЛЕННЯ ТА ЙОГО ЗАСТОСУВАННЯ У
ФIНАНСОВIЙ МАТЕМАТИЦI

Фракцiйне числення розширює класичне числення, дозволяючи диференцiювання та iнтегру-
вання довiльного (нецiлого) порядку, що надає цiннi iнструменти для аналiзу складних систем.
У цiй частинi роботи ми демонструємо основнi методи фракцiйного числення, зокрема пiдходи
Ейлера, Рiмана-Лiувiлля та Капуто. Аналiзується поведiнка функцiй, таких як 𝑥𝑛, 𝑒𝜆𝑥 i sin(𝑥),
для фракцiйних порядкiв, що демонструє, як фракцiйне диференцiювання призводить до рiзних
закономiрностей зростання та згасання.

У другiй частинi дослiджується застосування фрактальних похiдних у фiнансовiй математицi.
Ми представляємо використання похiдної Рiмана-Лiувiлля для моделювання динамiки цiн акцiй на
нелiквiдних ринках, де вартiсть активу може залишатися незмiнною протягом деякого часу. Для
цього використовуються субдифузiйнi процеси та фрактальне iнтегро-диференцiальне рiвняння з
похiдною Рiмана-Лiувiлля.

Iдея субдифузiйних моделей полягає в тому, щоб замiнити календарний час 𝑡 у русi безризикової
облiгацiї та класичному геометричному броунiвському русi (GBM) деяким стохастичним процесом
𝐻𝑡, який є моментом досягнення певного рiвня. Його можна iнтерпретувати як перший момент,
коли процес 𝐺𝑡 досягає бар’єру 𝑡.

Далi ми зосереджуємося на оцiнюваннi цiни європейського опцiону у випадку, коли базовий
актив є нелiквiдним. Цiна опцiону визначається як розв’язок фрактального iнтегро-диференцiального
рiвняння Дюпiра, в якому похiдна за часом замiнюється похiдною Джербашяна-Капуто (D–K).
Похiдна D–K є узагальненням пiдходу Капуто. Форма похiдної D–K залежить вiд випадкового
процесу 𝐺𝑡, який називають субординатою. Ми розглядаємо стандартний обернений гаусiвський
процес iз параметрами (1,1) як субординату 𝐺𝑡 i формулюємо твердження про вигляд фракталь-
ного рiвняння Дюпiра для вибраної субординати.

http://encyclopediaofmath.org/index.php?title=Black-Scholes_formula&oldid=50024
http://encyclopediaofmath.org/index.php?title=Black-Scholes_formula&oldid=50024
https://www.investopedia.com/terms/b/blackscholes.asp
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Завдяки запропонованим пiдходам iнвестор отримує iнструменти, що дозволяють йому врахо-
вувати нелiквiднiсть фiнансових ринкiв.

Ключовi слова: фракцiйне числення, похiдна Рiмана-Лiувiлля, пiдхiд Ейлера, пiдхiд Рiмана-
Лiувiлля, пiдхiд Капуто, субдифузiя, рiвняння Дюпiра, модель Блека-Шоулза, частковi iнтегро-
диференцiальнi рiвняння, похiднi Джербашяна-Капуто, субордината.
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