
УДК 519.85:004.42

M. Poliakov, N. Shvai
DOI: 10.18523/2617-70807202435-43

GAN-GENERATED STROKES EXTENSION FOR PAINT
TRANSFORMER

Neural painting produces a sequence of strokes for a given image and artistically recreates it using
neural networks. In this paper, we explore a novel Transformer-based framework named the Paint
Transformer to predict the parameters of a stroke set with a feed-forward neural network. The Paint
Transformer achieves better painting results than previous methods with more inexpensive training and
inference costs. The paper proposes a novel extension to the Paint Transformer that adds more complex
GAN-generated strokes to achieve a more artistically abstract painting style than the original method.
This research was originally published as a Master’s thesis [1].

Keywords: neural painting, transformer, GAN.

Introduction

Painting has been an excellent way for humans
to record what they perceive or even imagine the
universe around them and has long been known
to demand proficiency. Computer-aided art de-
sign essentially fills this gap and enables us to
make our creative pieces, particularly with the ap-
pearance of AI. However, most current generative
AI painting methods are still centered on teach-
ing computers how to "paint" at the pixel level to
achieve or mimic some painting style, for exam-
ple, purely GAN-based approaches [2] and style
transfer [3]. Humans create artworks through a
stroke-by-stroke process, using brushes from coarse
to fine. It is of great potential to make machines
imitate such a stroke-by-stroke process to develop
more genuine and human-like paintings. Thus, as
an emerging research topic, stroke-based neural
painting is analyzed to generate a series of strokes
to mimic how human painters create artistic works.
Generating stroke sequences for the painting pro-
cess is challenging even for skilled human painters,
especially when the targets have complicated com-
positions and rich textures. Some previous work
tackles this problem by a sequential process of gen-
erating strokes one by one, such as greedy search
step-by-step [4], recurrent neural networks [5], and
reinforcement learning [6]. Using an iterative op-
timization process, techniques [7] tackle this prob-
lem via stroke parameter searching.

Although these methods generate attractive
painting results, considerable room for advance-
ment in both efficiency and effectiveness still ex-
ists. Sequence-based methods such as RL are rela-
tively quick in inference but suffer from lengthy
training time and unstable agents. Meanwhile,
optimization-based approaches do not need train-
ing, but their optimization process is highly time-

consuming. Distinct from earlier techniques, in
this paper, we explore the painting process as a
set prediction task and a novel Transformer-based
framework, named Paint Transformer, proposed
by [8], to predict the parameters of a stroke set
with a feed-forward neural network. Paint Trans-
former achieves better painting results than previ-
ous methods with more inexpensive training and
inference costs.

Despite excellent Paint Transformer results,
there is room for further improvement. The paper
proposes a novel extension to Paint Transformer
that adds more complex GAN-generated strokes to
achieve a more artistically abstract painting style
than the original method.

Related work

Paint Transformer. Paint Transformer is
a progressive stroke prediction procedure. The
model predicts multiple strokes in parallel at each
step to minimize the difference between the current
canvas and our target image. Paint Transformer
has two modules: Stroke Renderer and Stroke Pre-
dictor. Provided a target picture, It, and an inter-
mediate canvas picture, Ic, Stroke Predictor yields
a set of parameters to choose the current stroke
set Sr. Then, Stroke Renderer renders the stroke
picture for each stroke in Sr and plots them onto
the canvas Ic, creating the resultant image Ir [8].
Or simply:

Ir = PaintTransformer(Ic, It) (1)

Only Stroke Predictor is trainable in Paint Trans-
former, while Stroke Renderer is a parameter-free
and differentiable module. Stroke Predictor has
a self-training pipeline that uses randomly sam-
pled strokes. During training, in each iteration, a

© M. Poliakov, N. Shvai, 2024

36 e-ISSN 2663-0648. Могилянський математичний журнал. 2024. Том 7

list of foreground stroke parameters Sf and a list
of background stroke parameters Sb are randomly
sampled. Stroke Renderer then generates a can-
vas picture Ic by taking as input Sb and producing
a target picture It by overlaying Sf onto Ic. In
the end, Stroke Predictor taking Ic and It as input
can predict a stroke list Sr, after which Stroke Ren-
derer can produce a predicted image Ir taking Sr

and Ic as intake. Therefore, Stroke Predictor op-
timization is conducted on both stroke and pixel
levels and the training goal can be stated as:

L = Lstroke(Sr, Sf) + Lpixel(Ir, It) (2)

where Lpixel and Lstroke are pixel loss and stroke
loss, respectively. Strokes are randomly sampled
so that unlimited data for training can be gener-
ated. Thus, Paint Transformer does not need any
prepared-in-advance training dataset.

In Paint Transformer, a stroke is a simple 1-
channel brush image, called primitive brush, which
can be transformed by shape parameters and color
parameters. The shape parameters of a stroke in-
clude height h, width w; a center point coordinates
x, y, and rotation angle θ. Color parameters con-
tain RGB values represented as r, g, and b. Thus,
a stroke s can be denoted as {x, y, h, w, θ, r, g, b}.
Let Iin and Iout be an input and output canvases,
and S = {si}ni=1 is a list of n strokes. Given a prim-
itive brush image Ib and a stroke si, Stroke Ren-
derer can change its color, and affine transforms its
shape and location in the canvas Cartesian coor-
dinate system, obtaining its rendered stroke image
Īib. Also, the renderer generates a 1-channel alpha
map αi with the same shape of Īib, as a binary mask
of si. Representing I0mid = Iin and Inmid = Iout, it
is possible to write the stroke rendering operation:

Iimid = αi · Īib +
(
1− αi

)
· Ii−1

mid (3)

and the whole Stroke Renderer process as:

Iout = StrokeRenderer(Iin, S) (4)

The purpose of a Stroke Predictor is to predict a
set of strokes that can cover the distinctions be-
tween an intermediate target and a canvas image.
Taking Ic, It with dimension 3 x m x m as input
(here, m is the stroke image’s width and height,
and 3 is the number of channels), Stroke Predictor
passes Ic and It through two independent convolu-
tion neural networks to extract their feature maps
as Fc, Ft with dimension c × m

4 × m
4 .

Afterward, Fc, Ft, and a learnable positional
encoding [9] are concatenated and flattened as the
intake of the Transformer encoder. The decoder
part takes N learnable stroke vectors as intake.

Ultimately, the decoder predicts initial stroke pa-
rameters S̄r = {si}Ni=1 and stroke confidence Cr =

= {ci}Ni=1 using two branches of fully-connected
layers.

Furthermore, in the forward phase, confidence
score ci can be transformed to a decision di =
= BinarySign(ci), where BinarySign is a binary
function whose value is 1 if ci is positive and is
0 otherwise. The decision di is used to decide
whether a predicted stroke should be painted on
the canvas image. Because the BinarySign func-
tion has zero gradient almost everywhere to enable
backpropagation sigmoid function σ(x) is used to
compute the gradient [8]:

∂di
∂ci

=
∂σ (ci)

∂ci
=

exp (−ci)

(1 + exp (−ci))
2 (5)

Collecting all inferred strokes with positive deci-
sions, it is possible to get the final Sr = {si}Ni=1

with N strokes and define Stroke Predictor as:

Sr = StrokePredictor(Ic, It) (6)

Paint Transformer can simultaneously mini-
mize the differences between target and prediction
on both image and stroke levels. Here is a list of
losses that are used to train Paint Transformer [8]:
Pixel loss is straightforwardly used to recreate a
target image. Thus, the pixel-wise loss Lpixel be-
tween Ir and It is minimized on the whole image
level:

Lpixel = ∥Ir − It∥1 (7)
Stroke loss is essential to define suitable metric for
estimating the difference between strokes on the
stroke level. To achieve the best results, three-
component losses are combined in the loss. Stroke
L∞ distance is intuitive (su and sv indicate pa-
rameters of strokes u and v, respectively):

Du,v
L1

= ∥su − sv∥1 (8)

Wasserstein distance is used because using the L1

metric alone ignores different scales for large and
little strokes. A rectangular rotational stroke with
parameters {x, y, h, w, θ} can be represented as a
2D Gaussian distribution N(µ,

∑
) by the next

equations as stated in [10]:
µ = (x, y),

Σ
1
2 =

[
cos θ − sin θ
sin θ cos θ

] [w
2

0

0 h
2

] [
cos θ sin θ
− sin θ cos θ

]

=

[
w
2
cos2 θ + h

2
sin2 θ w−h

2
cos θ sin θ

w−h
2

cos θ sin θ w
2
sin2 θ + h

2
cos2 θ

]
(9)

Hence, the Wasserstein distance between Gaussian
distributions N(µu,

∑
u) and N(µv,

∑
v) is (where

Tr denotes the trace of a matrix):

Du,v
W = ∥µu − µv∥2

2+Tr

(
Σu + Σv − 2

(
Σ

1
2
u ΣvΣ

1
2
u

) 1
2

)
(10)

M. Poliakov, N. Shvai. GAN-generated strokes extension for Paint Transformer 37

Binary cross-entropy is used to predict a stroke’s
confidence with the positive (negative) ground-
truth decision should be as high (low) as possible.
Let’s assume sv as a target stroke with ground-
truth label gv and su as a predicted stroke with
confidence cu and, where gv = 0 if sv is an empty
stroke and gv = 1 if sv is a valid stroke:

Du,v
bce = −gv · log σ (cu)−(1− gv) · log (1− σ (cu)) (11)

The number of valid ground-truth strokes varies
during training. Paint Transformer has a match-
ing instrument between the prediction set S̄r of
N strokes and the ground-truth set Sg of a max-
imum N strokes (there could be both empty and
valid strokes in Sg) to compute the loss function.
Paint Transformer uses the permutation of strokes
that yields the minimal stroke-level matching cost
to calculate final loss using the Hungarian algo-
rithm. For prediction set S̄r that has a stroke su
and for the target set Sg that has a stroke sv, their
cost value is (corresponding cost for empty target
strokes is always 0):

Mu,v = gv(Du,v
L1

+Du,v
W +Du,v

bce) (12)

Thus, marking the optimal permutations for pre-
dicted and target strokes as X and Y , respectively,
that are provided by the Hungarian algorithm, re-
spectively, the stroke loss is given by:

Lstroke =
1

n

n∑
i=1

gYi
(DXiYi

L1
+DXiYi

W +DXiYi

bce) (13)

Paint Transformer imitates a coarse-to-fine algo-
rithm to mimic an artist and yield painting results
during prediction. Provided a photo of dimension
H×W , Paint Transformer runs from coarse to fine
in order on K rankings. Painting on each ranking
is conditional on the result of the prior ranking.
The target image and current canvas are cut into
the number of non-overlapping P × P patches be-
fore being processed by the Stroke Predictor.

Neural Painters. The paper by Reiichiro
Nakano investigates different experiments with
neural painters built on differentiable simulations
of a non-differentiable painting program. Firstly,
two methods of training a neural painter using
VAEs and GANs, respectively, are presented. Sec-
ondly, the paper recreates SPIRAL reconstruction
results [11] using a non-RL learning adversarial
technique with a neural painter. Thirdly, the use
of a neural painter as a differentiable image pa-
rameterization is suggested. By optimizing strokes
directly using backpropagation, a method is sug-
gested to visualize pre-trained image classifiers by
letting them to paint classes they were trained

to determine [12]. For the purposes of this pa-
per, we are specifically interested in the GAN-
reconstruction of a non-differentiable painting pro-
gram brushstrokes.

The action space represents the set of param-
eters that are used as control inputs for the My-
Paint. The action space maps a single action to
a single stroke in the MyPaint. An agent paints
by sequentially yielding actions and spreading full
strokes on a canvas. The action space consists of
the next parameters [12]:

• Brush coordinates are a set of three Carte-
sian coordinates pairs representing the stroke
shape. The coordinates describe a start
point, end point, and middle control point,
forming a quadratic Bezier curve. We denote
them as {xs, ys, xe, ye, xc, yc} respectively.

• Start and end pressure describe the pressure
used on the brush at the start and end of the
stroke. We denote them as {ps, pe} respec-
tively.

• Brush size that specifies the brush radius and
denoted as s.

• Color consists of three variables that repre-
sent the RGB color of the brush and specified
as {r, g, b}.

To recreate a MyPaint brushstroke using a neu-
ral network [12] proposes VAE and GAN methods.
We focus here on the GAN [13] method because it
produces sharper images than VAE and thus more
accurate strokes. An adversarial loss is used to
directly learn a mapping from actions to strokes.
Unlike a typical GAN, the noise is not injected into
the intake of the generator. Instead, the genera-
tor takes the input action and maps it directly to
a stroke. The discriminator is provided with real
and generated action-stroke pairs and tries to de-
cide whether the pair is real. This is comparable
to a conditional GAN [14]. Pairs of true strokes
on the left and the complementary GAN neural
painter results on the right.

Methodology

GAN-generated strokes training. In this
paper, we propose combining GAN-stroke render-
ing system referenced above with Paint Trans-
former to introduce more complex strokes. Cur-
rent Paint Transformer Stroke Renderer has only
eight parameters, while GAN-stroke rendering has
12 with potential to increase up to 50 parameters
that MyPaint supports. First of all, we needed to
set up the MyPaint program to generate strokes
for the training, so we prepared a setup script for
macOS [15]. The training of the GAN network was
done locally on an Intel CPU based Mac laptop.
Since MyPaint generated the strokes using CPU,

https://github.com/mxpoliakov/PaintTransformerGAN/blob/main/gan_stroke_generator/build_mypaint_macos.sh

38 e-ISSN 2663-0648. Могилянський математичний журнал. 2024. Том 7

there is a bottleneck for training performance even
if GPU is available. The training code is based
on the implementation of Neural Painters by [12].
The modification is that we directly feed generated
MyPaint strokes into the discriminator in real-time
from a data loader. At the same time, [12] pre-
generated stroke images first and trained the net-
work afterward. We also simplified the MyPaint
API calling code and wrapped it in a data loader
[15] for convenience. The following stroke param-
eters are used: {xs, ys, xe, ye, xc, yc, s, ps, pe}. We
do not use color parameters to train strokes com-
pared to the original implementation because we
can colorize the strokes later in the Paint Trans-
former. We trained GAN strokes for about 11.7
million iterations, and it took about 36 hours to
do so due to the CPU bottleneck.

Figure 1. A GAN result sample on 11.7 million
iterations

The sample of the result on the final iteration
is provided in Figure 1. On the left (img_in) is
the image painted by MyPaint and on the right
(img_out) is the GAN-generated image on the
same set of action parameters. The discriminator
loss, generator score, and real score are provided
in Figures 2, 3, and 4, respectively. The x-axis
depicts iterations, and the y-axis is the numeric
score.

Figure 2. GAN-generated strokes discriminator loss

Figure 3. GAN-generated strokes generator score

Figure 4. GAN-generated strokes real score

GAN Stroke Renderer. Once the GAN
stroke predictor is trained, we can quickly predict
the MyPaint stroke shape using nine parameters
on the GPU with comparable quality to MyPaint.
We can now utilize the GAN-generated strokes
we trained, as a basis for a new stroke renderer
for Paint Transformer that would yield more ad-
vanced strokes than the original. We denote the
new stroke renderer as a GAN Stroke Renderer.
The set of parameters is now {xs, ys, xe, ye, xc,
yc, s, ps, pe, r, g, b}. As a first step, we infer set
stroke shapes from {xs, ys, xe, ye, xc, yc, s, ps, pe}
using GAN-generated strokes pre-trained weights
(step 1 denoted in Figure 5). Note that we do
not train GAN-generated strokes anymore and use
them as a predictor. The GAN output does not
have clear zero pixels and has numbers close to
zero instead. Therefore, we cannot create a binary
mask immediately and must utilize a denoising so-
lution. Considering Equation 3 for original Stroke
Renderer, we form an alpha map via αi = Īib >
> Q0.8(Ī

i
b), where Q0.8 is 80th-percentile. By also

forming a color map ci from {r, g, b} we can rewrite
Equation 3 as (steps 2, 3 denoted in Figure 5):

Iimid = αi · Īib · ci +
(
1− αi

)
· Ii−1

mid (14)

Stroke Predictor modification. We would
need to modify the Stroke Predictor so that
it could work with the new GAN Stroke Ren-
derer. We change the architecture of the Trans-
former to accept 12 parameters instead of 8
original. The main challenge is to modify the
loss function so that it would take new pa-
rameters. Specifically, the Wasserstein distance
needs a modification (Equation 9). Initially,

https://github.com/mxpoliakov/PaintTransformerGAN/blob/main/gan_stroke_generator/mypaint_gan_train_predict.py
https://github.com/mxpoliakov/PaintTransformerGAN/blob/main/gan_stroke_generator/mypaint_images_data_loader.py

M. Poliakov, N. Shvai. GAN-generated strokes extension for Paint Transformer 39

Figure 5. GAN Stroke Renderer

it accepts {x, y, h, w, θ} , and we need to take
{xs, ys, xe, ye, xc, yc, s, ps, pe}. Instead of modi-
fying this loss function directly, we decided in-
stead to translate {xs, ys, xe, ye, xc, yc, s, ps, pe}
into {x, y, h, w, θ} by creating a rotating bounding
box around the stroke.

We know that the stroke is a quadratic Bezier
curve represented by, where P0 = Ps = (xs, ys),
P1 = Pc = (xc, yc), P2 = Pe = (xe, ye) and t ∈
∈ [0, 1]:

B(t) =

2∑
i=0

B2
i (t) · Pi =

2∑
i=0

ti(1− t)2−i · Pi

= (1− t)2 · P0 + 2t(1− t) · P1 + t2 · P2

= (1− t)2 · Ps + 2t(1− t) · Pc + t2 · Pe

(15)

(a) Non-
rotating
bounding
box

(b) Curve
alignment

(c) Rotating
bounding
box

Figure 6. Bezier curve [16]

Firstly, we can find a non-rotating bounding
box by finding extremities of the Bezier curve by
finding maxima and minima on the component
functions, solving the equation B′(t) = 0 [16]:

B′(t) = 2(1− t)(Pc−Ps)+2t(Pe−Pc) = 0 =⇒

t =
Ps − Pc

−2 · Pc + Ps + Pe
(16)

Now when we know t, we could find the solution
and compare it with Ps and Pe. The lowest value
is the lower point Pmin = min(B(t), Ps, Pe), and

the highest is the upper point for the bounding box
Pmax = max(B(t), Ps, Pe) (Figure 5a). To get a
rotated bounding box, we need to make Ps = (0, 0)
and align the curve on the x-axis via (Figure 5b):

α = arctan
ye
xe

=⇒ R =

[
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
Ṗs = Ps − Ps = (0, 0)

Ṗc = (Pc − Ps) ·R
Ṗe = (Pe − Ps) ·R

(17)

Afterward, we calculate a non-rotating bounding
box for Ṗs, Ṗc, Ṗe via Equations 15, 16 and make
a reverse transformation [16]:

Ṗmin = min(Ḃ(t), Ṗs, Ṗe) = (ẋmin, ẏmin)

Ṗmax = max(Ḃ(t), Ṗs, Ṗe) = (ẋmax, ẏmax)

(xmax, ymax) = (ẋmax, ẏmax) ·R−1 + Ps

(xmin, ymin) = (ẋmin, ẏmin) ·R−1 + Ps

(x′
max, y

′
max) = (ẋmax, ẏmin) ·R−1 + Ps

(x′
min, y

′
min) = (ẋmin, ẏmax) ·R−1 + Ps

(18)

Thus, a rotating bounding box can be represented
by four points
(xmin, ymin), (xmax, ymax), (x

′
min, y

′
min), (x

′
max, y

′
max)

as depicted in Figure 5c. We also need to account
for start and end pressure and size; we found em-
pirically that we can modify {xs, ys, xe, ye, xc, yc}
with {s, ps, pe} before calculating the bounding
box, which yields better results (clamp is used to

40 e-ISSN 2663-0648. Могилянський математичний журнал. 2024. Том 7

restrict a value between 0 and 1):

xs = clamp(xs + 0.15 · ps, 0, 1);
ys = clamp(ys + 0.15 · ps, 0, 1)
xe = clamp(xe + 0.15 · pe, 0, 1);
ye = clamp(ys + 0.15 · pe, 0, 1)
xc = clamp(xc − 0.15 · s, 0, 1);
yc = clamp(yc − 0.15 · s, 0, 1)

(19)

Finally, we need to convert four coordinate points
into {x, y, h, w, θ}:

x =
xmax + xmin

2
; y =

y′max + ymin

2

w =
√

(y′max − ymax)2 + (x′
min − xmax)2

h =
√

(ymax − y′min)
2 + (xmax − x′

max)
2

θ = arctan
y′max − ymax

x′
max − xmax

(20)

The code implementation can be found in
get_rotated_bounding_box [15] method, and
the resulting bounding boxes on GAN-generated
strokes are shown in Figure 7.

Figure 7. Rotated bounding box on GAN-generated
strokes

Experiments

Training. Once the Stroke Predictor is op-
timized for the new set of parameters, we can
train Paint Transformer with a GAN Stroke Ren-
derer system. We trained Paint Transformer for
180 epochs, and the training process took about 6
hours on NVIDIA RTX 5000. In comparison, the
original Paint Transformer takes about 5-5.5 hours
to train 180 epochs on the same GPU. This means
that the training time for our GAN extension did
not increase significantly. In Figures 8 and 9, we
can notice the training charts for pixel and stroke
L1 distance losses. Wasserstein distance loss and a
binary cross-entropy decision loss are depicted in
Figures 10 and 11, respectively. The x-axis depicts
iterations, and the y-axis shows the numeric score.
Canvas-target-predict triads Sb, Sf , and Sr, are
shown in Figure 12 during the training. We also
changed the monitoring framework from Visdom
to the commonly used Tensorboard.

Figure 8. Paint Transformer pixel loss

Figure 9. Paint Transformer stroke L1 distance loss

Figure 10. Paint Transformer Wasserstein distance
loss

Figure 11. Paint Transformer binary cross-entropy
decision loss

Results. We modified the inference module
so it could work with GAN Stroke Renderer and
obtained the results depicted in Figure 13c. We
take Figure 13a as an input, and we also show the
original Paint Transformer results in Figure 13b.
For comparison, we choose the images in differ-
ent settings: sunflower and frog are macro images,
while the fjord and the city are landscape images.
Overall, we can notice that our Paint Transformer
extension paints the resulting pictures in a more
granular fashion (using the same value of K as the
original). This creates a more abstract painting
style, especially in the fjord, city, and sunflower
cases. We can also notice that the Paint Trans-
former extension does not paint larger strokes for
uniform patches. We can also notice that the
Paint Transformer extension does not paint larger

https://github.com/mxpoliakov/PaintTransformerGAN/blob/main/train/models/painter_model.py#L159

M. Poliakov, N. Shvai. GAN-generated strokes extension for Paint Transformer 41

Sb

Sf

Sr

Figure 12. Canvas-target-predict triads in training

strokes for the uniform patches. We need to further
modify Wasserstein distance loss and the binary
cross-entropy decision loss to improve the results.

Conclusions

We proposed a GAN strokes extension to the
Paint Transformer aimed at introducing more com-
plex strokes. We refined the Stroke Rendering sys-
tem, which generates strokes using a pre-trained
GAN and has 12 parameters compared to the orig-
inal 8. We partly modified the loss function to

accept a new parameter list. The results have
a different painting style and are more abstract;
however, the extension paints strokes of similar
size. This indicates that we need to make further
effort in modifying Wasserstein distance loss and
the binary cross-entropy decision loss to improve
the results, which we plan to address in our fu-
ture work. In addition, converting the network
architecture to use 4-channel images might further
enhance the results by removing artifacts on the
generated strokes.

42 e-ISSN 2663-0648. Могилянський математичний журнал. 2024. Том 7

(a) Input image (b) Original output (c) GAN-extension output

Figure 13. Comparison of the input image, original output and GAN-extension output.

M. Poliakov, N. Shvai. GAN-generated strokes extension for Paint Transformer 43

References

1. M. Poliakov,
https://ekmair.ukma.edu.ua/handle/123456789/28820.

2. A. Elgammal, https://arxiv.org/abs/1706.07068.
3. L. A. Gatys, https://arxiv.org/abs/1508.06576.
4. P. Haeberli, in: Proceedings of the 17th Annual Con-

ference on Computer Graphics and Interactive Tech-
niques. — SIGGRAPH ’90 (New York, NY, USA: Asso-
ciation for Computing Machinery, 1990), pp. 207–214.
https://doi.org/10.1145/97879.97902.

5. D. Ha, https://arxiv.org/abs/1704.03477.
6. T. Zhou, https://arxiv.org/abs/1810.05977.

7. Z. Zou, https://arxiv.org/abs/2011.08114.
8. S. Liu, https://arxiv.org/abs/2108.03798.
9. A. Vaswani, https://arxiv.org/abs/1706.03762.

10. X. Yang, https://arxiv.org/abs/2101.11952.
11. Y. Ganin, https://arxiv.org/abs/1804.01118.
12. R. Nakano, https://arxiv.org/abs/1904.08410.
13. I. J. Goodfellow, https://arxiv.org/abs/1406.2661.
14. M. Mirza, https://arxiv.org/abs/1411.1784.
15. M. Poliakov, https://github.com/mxpoliakov/PaintTransformerGAN.
16. Pomax. A primer on bezier curves,

https://pomax.github.io/bezierinfo.

Поляков М. Х., Швай Н. О.

РОЗШИРЕННЯ МОЖЛИВОСТЕЙ PAINT
TRANSFORMER З ГЕНЕРУВАННЯМ МАЗКIВ ПЕНЗЛЯ

ЗА ДОПОМОГОЮ GAN

Нейронне малювання створює послiдовнiсть мазкiв для заданого зображення i художньо вiдтво-
рює його за допомогою нейронних мереж. У цiй статтi ми дослiджуємо нову архiтектуру, основану
на Transformer, пiд назвою Paint Transformer, яка прогнозує параметри набору мазкiв за допомо-
гою прямопрохiдної нейронної мережi. Paint Transformer забезпечує кращi результати малювання
порiвняно з попереднiми методами, маючи нижчi витрати на навчання та використання. У статтi
також пропонується нове розширення Paint Transformer, яке додає бiльш складнi мазки, згенеро-
ванi GAN, для досягнення бiльш художнього та абстрактного стилю малювання, нiж оригiнальний
метод.

Ключовi слова: нейронне малювання, трансформер, GAN.

Матерiал надiйшов 07.01.2025

Creative Commons Attribution 4.0 International License (CC BY 4.0)

	Introduction
	Related work
	Paint Transformer
	Neural Painters

	Methodology
	GAN-generated strokes training
	GAN Stroke Renderer
	Stroke Predictor modification

	Experiments
	Training
	Results

	Conclusions

