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ROBUST BAYESIAN REGRESSION MODEL IN
BERNSTEIN FORM

In this paper, we present an inductive method for constructing robust Bayesian Polynomial Regression
(BPR) models in Bernstein form, referred to as PRIAM (Polynomial Regression Inductive AlgorithM).
PRIAM is an algorithm designed to determine stochastic dependence between variables. The triple nature
of PRIAM combines the advantages of Bayesian inference, the interpretability of neurofuzzy models in
Bernstein form, and the robustness of the support vector approach. This combination facilitates the
integration of state-of-the-art machine learning techniques in decision support systems. We conduct
experiments using well-known datasets and real-world economic, ecological, and meteorological models.
Furthermore, we compare the forecast errors of PRIAM against several competitive algorithms.

Keywords: PRIAM, Bayesian inference, BPR, neurofuzzy model, polynomials in Bernstein form.

Introduction

Data mining competitions are an effective tool
for evaluating the performance of specific meth-
ods among the growing variety of approaches.
Recent contests, such as those hosted on Kag-
gle (https://www.kaggle.com/competitions) and
the Data Mining Cup (http://www.data-mining-
cup.com) have demonstrated the advantages of
Bayesian and support vector (SV) methods. How-
ever, despite their high performance, these meth-
ods often face challenges in seamless integration
into decision support systems. In contrast, neuro-
fuzzy modeling offers an appealing framework for
knowledge representation. This work seeks to com-
bine the strengths of Bayesian reasoning, the ro-
bustness of the SV approach, and the interpretabil-
ity of neurofuzzy modeling.

Brief historical outlook. Bayesianism began
with Savage’s personalistic school of thought and
gained strength through the objective selection
of prior probabilities based on the maximum en-
tropy principle [1]. Since then, Bayesianism has in-
spired a series of significant contributions. For in-
stance, Bayesian Occam’s razor was demonstrated
by Gull [2] as a method to estimate the parameters
of prior probabilities in regression analysis. This
concept was later applied by MacKay for the reg-
ularization of artificial neural networks in the so-
called Bayesian evidence framework [3]. Addition-
ally, the theory of Gaussian Processes (GP) incor-
porates evidence, also referred to as marginal like-
lihood, as a fundamental component of Bayesian
inference [4].

Brown and Harris [5] established a correspon-
dence between associative memory networks and
fuzzy logic in neurofuzzy adaptive models. These
models combine the transparent knowledge repre-

sentation of fuzzy systems with the analytical abil-
ity to learn from observations. The ability to de-
scribe the behavior of neurofuzzy models as a series
of human-readable linguistic rules makes them par-
ticularly well-suited for expert systems. However,
conventional neurofuzzy models often suffer from
the curse of dimensionality. To address this, Hong
and Harris [6] proposed a polynomial complexity
neurofuzzy approach.

Another efficient approach to process analysis
is the Statistical Learning Theory (SLT) developed
by Vapnik [7]. SLT is founded on the structural
risk minimization principle, which is implemented
in support vector machines (SVM) for classifica-
tion problems [8]. SVM has since been extended
to regression problems, leading to the development
of support vector regression (SVR)[?], and further
refined into Bayesian SVR[10]. In this work, we
leverage the support vector (SV) approach to en-
hance the robustness of our models.

General problem statement. Suppose we
observe the data:

𝒟 = {(𝑦𝑗 ,x𝑗)}𝑁𝑗=1, 𝑦 ∈ R, x ∈ 𝒳 = R𝑛.

We hypothesize the existence of a stochastic de-
pendence that maps each x to some value 𝑦 ob-
tained from a random trial governed by the law
𝑝(𝑦|x). To determine this stochastic dependence,
we aim to identify the probability density func-
tion 𝑝(𝑦|x). However, this inverse problem is in-
herently ill-posed. Using the finite training set 𝒟,
we can only estimate posterior predictive distri-
bution 𝑝(𝑦|x,𝒟). This estimation depends on the
confidence in the observed data and the regular-
ization methods applied to make the problem well-
posed. In this paper, we focus on finding the mean
of the posterior predictive distribution along with
its variance.
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The paper is organized as follows. We be-
gin with an overview of the Bayesian framework.
Next, we explore neurofuzzy models in Bernstein
form and introduce a procedure for searching sub-
optimal models. Robustness is incorporated into
the model afterward. As a result, we propose
PRIAM – an inductive algorithm for construct-
ing robust BPR models in Bernstein form, capa-
ble of encoding prior knowledge and generalizing
effectively. Finally, we conduct experiments with
PRIAM on both synthetic and real-world datasets,
comparing its performance to that of other com-
petitive algorithms.

Bayesian Framework

Let the systematic component of the stochastic
dependence be described by a latent function 𝑓 of a
modelℳ from the model space ℋ. This raises the
following questions: how should the model space
ℋ be chosen, how should the model ℳ ∈ ℋ be
selected, and how can the function 𝑓 ∈ ℳ be de-
termined. Bayesian reasoning provides answers to
the last two questions.

Selection of a model ℳ. According to the
Bayesian approach, the model with the maximum
posterior probability 𝑃 (ℳ|𝒟) is selected. Assum-
ing a flat prior distribution of models over the
space ℋ (i.e. complete ignorance), the models are
ranked by their marginal likelihood 𝑝(𝒟|ℳ), also
known as evidence. Evidence reflects the ability of
the modelℳ to generate the data 𝒟 and is defined
as the following Lebesgue integral:

𝑝(𝒟|ℳ) =

∫︁
ℳ

𝑝(𝒟|𝑓,ℳ)𝑑𝜇(𝑓), (1)

where 𝜇(𝑓) represents the prior probability mea-
sure on the function space ℳ. The likelihood
𝑝(𝒟|𝑓,ℳ) reflects the ability of the function 𝑓 ∈
∈ ℳ to generate the data 𝒟. Assume that the
random component of the stochastic dependence is
represented by additive noise, so that 𝑦𝑗 = 𝑓(x𝑗)+
+𝛿𝑗 , where 𝛿𝑗 are independent and identically dis-
tributed random variables. Under this assumption,
the likelihood takes the following form:

𝑝(𝒟|𝑓,ℳ) =

𝑁∏︁
𝑗

𝑝(𝛿𝑗 |𝑓,ℳ),

where 𝑝(𝛿|𝑓,ℳ) is a noise model. Both the noise
model and the prior measure 𝜇(𝑓) will be selected
later.

The evidence (1) can be approximated using
various techniques, including expectation propaga-
tion (EP), Laplace’s method, Markov chain Monte
Carlo (MCMC). An overview and comparison of
these methods are provided by Kuss [11].

Selection of a function 𝑓 . The posterior
probability measure can be derived using Bayes’
rule:

𝑑𝜇(𝑓 |𝒟) = 𝑝(𝒟|𝑓,ℳ)𝑑𝜇(𝑓)

𝑝(𝒟|ℳ)
.

Our goal is to determine the posterior predictive
distribution, which represents the posterior beliefs
about the output value 𝑦. This distribution is
obtained by integrating over the posterior uncer-
tainty of the function:

𝑝(𝑦|x,𝒟,ℳ) =

∫︁
ℳ

𝑝(𝑦|x, 𝑓,ℳ)𝑑𝜇(𝑓 |𝒟).

According to Bayesian decision theory, to obtain a
single function estimate 𝑔 ∈ℳ for regression 𝑦(x),
we minimize the Bayesian risk, defined as the ex-
pectation of a loss functional 𝐿:

𝑅(𝑔) = E𝑓 [𝐿(𝑓, 𝑔)] =

∫︁
ℳ

𝐿(𝑓, 𝑔)𝑑𝜇(𝑓 |𝒟).

The loss functional 𝐿 reflects the researcher’s
subjective attitude toward risk. Typically, the
choice of 𝐿 is a point of debate among researchers.
We will establish our choice of 𝐿 later.

In the next section, we address the question of
how to select the model space and organize the
model search process.

Polynomial Regression in Bernstein Form

Hong and Harris [6] introduced neurofuzzy
models based on the following truncated ANOVA
decomposition for input variable x =

{︀
𝑥𝑖
}︀𝑛

𝑖=1
:

𝑓(x) = 𝑏+

𝑛∑︁
𝑘=1

𝐵𝑑
𝑘(𝑥

𝑘) +

𝑛∑︁
𝑞>𝑝

𝐵𝑑
𝑝𝑞 (𝑥

𝑝, 𝑥𝑞) . (2)

𝐵𝑑
𝑘 , 𝐵𝑑

𝑝𝑞 are univariate and bivariate polynomials
in Bernstein form, defined as linear combinations
of Bernstein basis polynomials of degree 𝑑:

𝐵𝑑
𝑘(𝑥

𝑘) =
∑︀𝑑

𝑗=0 𝑤
𝑘
𝑗 𝜑

𝑑
𝑗

[︀
𝑠(𝑥𝑘)

]︀
,

𝐵𝑑
𝑝𝑞(𝑥

𝑝, 𝑥𝑞) =
∑︀

𝑖+𝑟+𝑡=𝑑 𝑤
𝑝𝑞
𝑖𝑟𝑡𝜑

𝑑
𝑖𝑟𝑡 [u(𝑥

𝑝, 𝑥𝑞)] .

We refer to models (2) as neurofuzzy models in
Bernstein form. The Bernstein basis polynomials
are defined as:

𝜑𝑑
𝑗 (𝑠) =

(︂
𝑑

𝑗

)︂
· 𝑠𝑗(1− 𝑠)𝑑−𝑗 ,

𝜑𝑑
𝑖𝑟𝑡(u) =

(︂
𝑑

𝑖, 𝑟, 𝑡

)︂
𝑢𝑖𝑣𝑟(1− 𝑢− 𝑣)𝑡.

To determine the barycentric coordinates 𝑠 and
u = {𝑢, 𝑣} we follow the approach proposed in [12],
which introduces a fast inverse de Casteljau map-
ping based on a uniform knot layout.
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After training such neurofuzzy models, depen-
dencies can be interpreted using fuzzy logic and
generate a set of fuzzy rules [5]. It is well-known
that Bernstein basis polynomials are non-negative
and satisfy the unity of support property:

∑︀
𝑗 𝜑𝑗 =

= 1. Therefore, Bernstein basis polynomials are
valid fuzzy membership functions. The advan-
tages of this approach include: transparency of the
model structure, interpretation of dependencies in
terms of fuzzy logic, and polynomial complexity of
the resulting set of fuzzy rules.

Selection of a model space ℋ. Let us lever-
age the advantages of neurofuzzy modeling. To
achieve this, we define the configuration of the
model space as an upper triangular [𝑛× 𝑛] matrix
C. Each diagonal element 𝑐𝑘 represents the de-
gree of a univariate polynomial in Bernstein form
for the factor 𝑥𝑘. Each element above the diagonal,
𝑐𝑞>𝑝, represents the degree of a bivariate polyno-
mial in Bernstein form for the pair 𝑥𝑝 and 𝑥𝑞. The
corresponding model space is expressed as:

ℳ(w, 𝑏,x) = ℋ(C,w, 𝑏,x) =

= 𝑏+

𝑛∑︁
𝑘=1

𝐵𝑐𝑘
𝑘 (𝑥𝑘) +

𝑛∑︁
𝑞>𝑝

𝐵𝑐𝑝𝑞
𝑝𝑞 (𝑥𝑝, 𝑥𝑞) , (3)

where parameters w = {. . . , 𝑤𝑘
𝑗 , . . . , 𝑤

𝑝𝑞
𝑖𝑟𝑡, . . .}.

The models in the form (3) generalize those in the
form (2). Furthermore, the models (3) can also be
considered linear in parameters w within a high-
dimensional Euclidian space𝒲 with the canonical
scalar product ⟨·, ·⟩ and norm ‖ · ‖:

𝑓(x) =ℳ(w, 𝑏,x) = ⟨w,Φ(x)⟩+ 𝑏,

where Φ(C) : 𝒳 → 𝒲 represents the mapping:

Φ : x ↦→ {. . . , 𝜑𝑐𝑘
𝑗

(︀
𝑥𝑘

)︀
, . . . , 𝜑

𝑐𝑝𝑞
𝑖𝑟𝑡 (𝑥

𝑝, 𝑥𝑞) , . . .}.

Model search in neurofuzzy model space.
Algorithm 1 demonstrates how an initial model
guess can be refined using evidence-based calcu-
lations.

Algorithm 1 Model search
Input: observations 𝒟, convergence level 𝜈 > 0,
initial model ℳ(0) = ℋ

(︀
C(0)

)︀
Result: suboptimal model ℳopt
Iterator 𝑡←−0
repeat
ℳopt ←−ℳ(𝑡)

Generate a set of candidate models:{︁
ℳ(𝑡+1)

𝑖𝑗 = ℋ
(︁
C

(𝑡+1)
𝑖𝑗

)︁}︁
𝑖𝑗
, where

C
(𝑡+1)
𝑖𝑗 = C(𝑡) ± 1𝑖𝑗 , 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝑛.

Choose the model with the maximum evi-
dence:
ℳ(𝑡+1) = arg

[︁
𝑝(𝑡+1) = max 𝑝

(︁
𝒟|ℳ(𝑡+1)

𝑖𝑗

)︁]︁
𝑡←− 𝑡+ 1

until 𝑝(𝑡) < 𝑝(𝑡−1) + 𝜈

First, we define the space ℋ of models ℳ in
the form (3). Based on prior assumptions about
the model structure, the initial configuration C(0)

is constructed. At each step, a set of candidate
models is generated, each differing in the degree of
one polynomial in Bernstein form. For each candi-
date model, the evidence is calculated. The model
with the maximum evidence is selected. The new
model is accepted if its evidence exceeds that of
the previous model by a threshold 𝜈. This thresh-
old determines the linear convergence speed and
reflects the degree of confidence in the prior model
structure.

Robust BPR in Bernstein Form

To leverage the robustness of Support Vector
Regression (SVR), we define the noise model as:

𝑝(𝛿𝑗 |𝑓,ℳ) =
𝛽

2(1 + 𝜖𝛽)
exp(−𝛽|𝛿𝑗 |𝜖), (4)

where | · |𝜖 is the 𝜖-insensitive loss function (𝜖-ILF),
which provides sparseness and robustness to the
BPR models. The parameters 𝜖 and 𝛽 are referred
to as hyperparameters. In this work we assume
flat priors for these hyperparameters.

Let the prior probability measure 𝜇(𝑓) have a
density 𝑝(w|ℳ) with respect to the Lebesgue mea-
sure on the parameter space 𝒲:

𝑑𝜇(𝑓) = 𝑝(w|ℳ)𝑑w.

Let this density be a multivariate Gaussian with 0
mean and identity covariance matrix I:

𝑝(w|ℳ) = 𝒩 (0, I).

We define the loss functional 𝐿 as 𝐿(𝑓, 𝑔) =
= {0 if 𝑓 = 𝑔; 1 if 𝑓 ̸= 𝑔}. In this case, the
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Bayesian risk is minimized at the mode of the pos-
terior function distribution, yielding the so-called
Maximum a Posteriori (MAP) estimate. The MAP
estimate for BPR with the noise model (4) corre-
sponds to the canonical SVR problem:

𝑅(𝑓) = 𝛽

𝑁∑︁
𝑗=1

|𝛿𝑗 |𝜖 +
1

2
‖w‖2 −→ min

𝑓
, (5)

with solution in the form:

𝑓map(x) =
∑︀

𝑗(𝛼𝑗 − 𝛼*
𝑗 )⟨Φ(x𝑗),Φ(x)⟩+ 𝑏map,

wmap =
∑︀

𝑗(𝛼𝑗 − 𝛼*
𝑗 )Φ(x𝑗), 𝛼𝑗 , 𝛼

*
𝑗 ∈ (0, 𝛽),

𝑏map = mean𝑗

{︂
𝑦𝑗 − ⟨w,Φ(x𝑗)⟩ − 𝜖
𝑦𝑗 − ⟨w,Φ(x𝑗)⟩+ 𝜖

}︂
,

where 𝛼𝑗 , 𝛼*
𝑗 are the Lagrange multipliers of the

corresponding quadratic programming (QP) prob-
lem.

The algorithm 1, under the assumptions de-
scribed above, is referred to as PRIAM. In the
following subsections, we demonstrate how to esti-
mate the evidence and error bars in PRIAM.

Evidence Estimation

For fast evidence estimation, we adopt the ap-
proach described in [13], where a locally smoothed
loss function is used to approximate 𝜖-ILF. This
approach yields the following approximation, re-
ferred to as Bayesian Evidence Criterion (BEC),
for negative logarithm of the Bayesian evidence:

− ln 𝑝(𝒟|ℳ) ≈ BEC(ℳ, 𝜖, 𝛽) =

= 𝑅(wmap)−𝑁 ln
𝛽

2(1 + 𝜖𝛽)
. (6)

Although the BEC approximation is not entirely
accurate, it preserves sparseness and is recognized
as the fastest method for model comparison.

While evidence should be maximized, BEC
should be minimized. Additionally, since BEC de-
pends on the hyperparameters 𝜖 and 𝛽, it can also
be minimized with respect to these hyperparame-
ters:

BEC(ℳ) = min
𝜖,𝛽

BEC(ℳ, 𝜖, 𝛽). (7)

This is a nonlinear minimization problem. The
gradient of BEC is expressed as:

∇BEC
𝜖,𝛽 =

[︂
𝑁𝛽

1 + 𝜖𝛽
− 𝛽𝑁sv, 𝑁𝑅emp −

𝑁

𝛽(1 + 𝜖𝛽)

]︂
where 𝑁sv is the number of support vectors, and
the empiric risk is defined as 𝑅emp =

∑︀𝑁
𝑗=1 |𝛿𝑗 |𝜖.

To minimize (7) with respect to the hyperparam-
eters, we employ the Interior Reflective Newton
(IRN) method. IRN is known for its global and
quadratic convergence properties [14].

Estimation of error bars. The variance of
the noise model (4) can be easily computed as:

𝜎2
𝑁 =

2

𝛽2
+

𝜖2(𝜖𝛽 + 3)

3(𝜖𝛽 + 1)
.

It is well-known that, for Gaussian noise, the
posterior predictive distribution is also Gaussian
𝑝(𝑦*|x*,𝒟) = 𝒩 (𝑦*|𝑓mean(x*), 𝜎

2), with variance

𝜎2 = 𝑘** − k⊤
* (K+ 𝜎2

𝑁I)−1k* + 𝜎2
𝑁 , (8)

where matrix K ∼ 𝑘(x𝑖,x𝑗) = ⟨Φ(x𝑖),Φ(x𝑗)⟩,
k* = [𝑘(x1,x*), . . . , 𝑘(x𝑁 ,x*)]

⊤ and 𝑘** =
= 𝑘(x*,x*). Although our noise model differs
from the normal distribution, it can be shown that
the distribution (4) is sufficiently close to a nor-
mal distribution with the same variance to justify
using (8) as an acceptable approximation for the
posterior variance. Furthermore, as demonstrated
by Gao [15], the computation of k* and K can be
reduced to the marginal support vectors X𝑀 =
= {x𝑖 : |𝑦𝑖 − 𝑓(x𝑖)| = 𝜖}. Finally, we use ±2𝜎 to
represent the 95% confidence interval.

Pros and cons of the SVR with BEC ap-
proach. Advantages:

1. SV expansion is independent of the input
space dimension, mitigating the curse of di-
mensionality in reconstruction problems.

2. A unique solution is obtained after training,
as it is derived from solving a QP problem.

3. The SVR model exhibits robustness and
sparseness.

4. The BEC provides an exceptionally fast
model search method.

Disadvantages:
1. The BEC computation lacks precision, ne-

cessitating the selection of models with sig-
nificantly smaller BEC values during model
comparison.

2. Relying on the mode of the posterior function
distribution for a given model (MAP estima-
tion) deviates from pure Bayesian inference
principles.

Experiments

For the experiments, we selected the Longley
and Filip datasets from the Statistical Reference
Datasets project [16]. Additionally, we included
the well-known synthetic Friedman dataset. The
AutoMPG dataset, which represents city cycle
fuel consumption, was obtained from the UCI Ma-
chine Learning Repository [17]. The CPI and
RCON datasets correspond to economic models
of the Consumer Price Index and Real Consump-
tion, respectively, as studied in [18]. The WIW
dataset represents a meteorological wind-induced
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wave model, while IBSS corresponds to an ecolog-
ical model of macrozoobenthic biomass.

We compared PRIAM with GMDH (Group
Method of Data Handling), NF-GMDH (Neuro-
fuzzy Group Method of Data Handling, imple-
mented in “GMDH Modeler 0.9.37”), RNN (Re-
current Neural Networks), and ANFIS (Adaptive
Neuro Fuzzy Inference System), both implemented
in “NeuroSolutions 5”. Additionally, we evaluated
GPR (Gaussian Process Regression) and XGBoost
(Extreme Gradient Boosting), both available as
Python packages. A brief excerpt of our experi-
mental results is shown in Table 1.

The table also includes information about the
size of the full dataset (𝑁), the size of the learning
dataset (𝑁𝑙𝑒𝑎𝑟𝑛), and the number of input factors
(𝑛) for each problem. A significant discrepancy be-
tween the MSEs of two different methods can be
detected using Fisher statistics 𝐹

(80%)
𝑁−𝑛,𝑁−𝑛.

Let us create a rating table for different algo-
rithms. The algorithm with the smallest MSE re-
sult receives 10 points, the second 8 points, and
so on. The two algorithms with the worst re-
sults receive no points. If multiple algorithms show
insignificant differences in results, they share the
same number of points. This way 30 points are dis-
tributed among all algorithms for each dataset.

As shown in Table 2, PRIAM achieves the high-
est rating among all the algorithms. Its perfor-
mance is stable and never ranks among the worst.
It is worth noting, however, that this rating is not
absolute but instead reflects the strength of a spe-
cific algorithm in a particular implementation.

In the next subsection, we provide a detailed
description of the result for the RCON dataset.

Dynamics of real consumption. The
model for real consumption (𝑅𝐶𝑂𝑁) is defined as
a function of two factors: the interest rate (𝑅) and
real domestic income (𝑅𝐷𝐼). The dataset consists
of 24 observations, corresponding to monthly sam-
ples over a two years period. The first 14 points
are used for training, while the last 10 points are
reserved for forecasting and calculating the gen-
eralization error. The initial configuration of the
model C(0) = diag{1, 1} reflects our prior belief in
linear dependencies. The optimal PRIAM model
is shown in Fig. 1.
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Figure 1. RCON dataset and optimal PRIAM
model with 95% confidence interval. Squares stand

for SVs, circles are vectors inside 𝜖-tube.
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Figure 2. The contour plots illustrate the
dependencies of BEC and generalization error on the
width of the 𝜖-tube (abscissa axis) for different values

of the hyperparameter 𝛽 (ordinate axis). Crosses
indicate the optimal hyperparameter values.

The corresponding optimal model configuration
is given by Copt = diag{1, 2}, highlighting the re-
inforcing effect of 𝑅𝐷𝐼. The normalized model
representation using the SV expansion is as fol-
lows:

𝑓opt(x) = 0.43 + 6.6𝑘(x8,x) + 25.5𝑘(x9,x)−
− 29.8𝑘(x11,x)− 2.6𝑘(x12,x) + 0.3𝑘(x13,x).

Dual model representation in neurofuzzy space:

𝑓opt(x) = 0.43 + 0.06𝜑1
0(𝑥

1)− 0.06𝜑1
1(𝑥

1)−

− 0.58𝜑2
0(𝑥

2) + 0.13𝜑2
1(𝑥

2) + 0.45𝜑2
2(𝑥

2).

where 𝑥1 ≡ 𝑅, 𝑥2 ≡ 𝑅𝐷𝐼. Here, we observe a
weak dependence of 𝑅𝐶𝑂𝑁 on 𝑅.

To evaluate the efficiency of BEC, we conduct a
more detailed analysis of the relationship between
BEC and generalization error with respect to the
hyperparameters. According to the BEC contours
(Fig. 2a), the optimal hyperparameter region is
characterized by 𝜖 near 0.12, and high values of
𝛽. PRIAM successfully identifies the optimal hy-
perparameters, as 𝛽 = 29.8 and 𝜖 = 0.12. MSE
contours (Fig. 2b) further confirm the efficiency of
𝜖 ≈ 0.12. However, they also indicate that fore-
casting is largely indifferent to the value of 𝛽 for
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Table 1. Comparison of algorithms on different datasets by normalized MSE

Algorithm Longley Filip Friedman AMPG CPI RCON WIW IBSS
𝑁(𝑁𝑙𝑒𝑎𝑟𝑛) 16(11) 82(33) 1000(500) 392(300) 24(14) 24(14) 166(100) 50(25)
𝑛 6 1 10 4 4 2 3 2
𝐹

(80%)
𝑁−𝑛,𝑁−𝑛 2.2 1.3 1.0 1.0 1.8 1.7 1.1 1.4

PRIAM 0.017 0.004 0.009 0.022 0.003 0.027 0.033 0.076
GMDH 0.051 0.016 0.029 0.024 0.130 0.042 0.025 0.124
NF-GMDH 0.001 0.039 0.037 0.026 0.008 0.098 0.043 0.053
RNN 0.018 0.012 0.008 0.028 0.090 0.101 0.033 0.083
ANFIS 0.002 0.001 0.009 0.027 0.003 0.051 0.031 0.110
GPR 0.054 0.010 0.008 0.025 0.096 0.043 0.032 0.086
XGBoost 0.022 0.001 0.004 0.019 0.073 0.063 0.041 0.140

Table 2. Algorithm rating

Algorithm Longley Filip Friedman AMPG CPI RCON WIW IBSS Rating
PRIAM 4 6 3 8 9 10 5 6 51
GMDH 0 0 0 6 0 6 10 1 23
NF-GMDH 9 0 0 2 6 0 0 10 27
RNN 4 3 7 0 2 0 5 6 27
ANFIS 9 9 3 0 9 6 5 1 42
GPR 0 3 7 4 2 6 5 6 33
XGBoost 4 9 10 10 2 2 0 0 37

wide 𝜖-tubes. The significance of 𝛽 becomes no-
table only for narrower tubes.

Generation of fuzzy rules. We demonstrate
how fuzzy rules can be generated based on the
model in neurofuzzy space [19]. A balanced neuro-
fuzzy model, like the one described above, can be
decomposed into two neurofuzzy submodels in the
canonical form due to the unity of support prop-
erty:

𝑓1(𝑥
1) = 0.49𝜇𝐴1

0
(𝑥1) + 0.37𝜇𝐴1

1
(𝑥1),

𝑓2(𝑥
2) = −0.15𝜇𝐴2

0
(·) + 0.56𝜇𝐴2

1
(·) + 0.88𝜇𝐴2

2
(·)

where the Bernstein basis polynomials are used as
fuzzy membership functions, 𝜑𝑑

𝑗 ≡ 𝜇𝐴𝑑
𝑗
, with the

corresponding fuzzy labels on input space: 𝐴1
0 —

low 𝑅, 𝐴1
1 — high 𝑅, 𝐴2

0 — low 𝑅𝐷𝐼, 𝐴2
1 — aver-

age 𝑅𝐷𝐼, 𝐴2
2 — high 𝑅𝐷𝐼. Each submodel gener-

ates simplified rules independently and contributes
to a fuzzy knowledge base of reduced complexity.

The rules and their confidences can be easily de-
termined if the output fuzzy membership functions
are represented as B-splines. In this case, at most
two adjacent coefficients are nonzero. Let us define
fuzzy membership functions for the 𝑅𝐶𝑂𝑁 output
variable, normalized on [0; 1], using three second-
order B-splines 𝜇𝐵𝑘

with a triangular shape. These
B-splines are defined over the knots {-0.5; 0; 0.5;
1; 1.5} with peaks at {0; 0.5; 1}. They correspond
to the following fuzzy labels: 𝐵0 — low 𝑅𝐶𝑂𝑁 ,

𝐵1 — average 𝑅𝐶𝑂𝑁 , 𝐵2 — high 𝑅𝐶𝑂𝑁 .
The rule 𝑅𝑖

𝑗 produced by submodel 𝑓𝑖 is ex-
pressed as: “if 𝑥𝑖 ∈ 𝐴𝑖

𝑗 , then 𝑦 ∈ 𝐵𝑘 with confi-
dence 𝑐𝑖𝑘𝑗”, where the rule confidences 𝑐𝑖𝑘𝑗 are de-
termined by converting the weights of the model
in the neurofuzzy space as follows:

𝑐𝑖𝑘𝑗 = 𝜇𝐵𝑘

(︂
𝑓𝑖

(︂
argmax

𝑥𝑖
𝜇𝐴𝑖

𝑗
(𝑥𝑖)

)︂)︂
.

Thus, we derive five rules:

𝑅1
0 : 𝑖𝑓 𝑅 𝑖𝑠 𝑙𝑜𝑤, 𝑡ℎ𝑒𝑛

𝑅𝐶𝑂𝑁 𝑖𝑠 𝑙𝑜𝑤 (0.02) 𝑜𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (0.98)
𝑅1

1 : 𝑖𝑓 𝑅 𝑖𝑠 ℎ𝑖𝑔ℎ, 𝑡ℎ𝑒𝑛
𝑅𝐶𝑂𝑁 𝑖𝑠 𝑙𝑜𝑤 (0.26) 𝑜𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (0.74)

𝑅2
0 : 𝑖𝑓 𝑅𝐷𝐼 𝑖𝑠 𝑙𝑜𝑤, 𝑡ℎ𝑒𝑛

𝑅𝐶𝑂𝑁 𝑖𝑠 𝑙𝑜𝑤 (1.0)
𝑅2

1 : 𝑖𝑓 𝑅𝐷𝐼 𝑖𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑡ℎ𝑒𝑛
𝑅𝐶𝑂𝑁 𝑖𝑠 𝑙𝑜𝑤 (0.08) 𝑜𝑟 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (0.92)

𝑅2
2 : 𝑖𝑓 𝑅𝐷𝐼 𝑖𝑠 ℎ𝑖𝑔ℎ, 𝑡ℎ𝑒𝑛

𝑅𝐶𝑂𝑁 𝑖𝑠 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (0.24) 𝑜𝑟 ℎ𝑖𝑔ℎ (0.76)

Although these rules are not suitable for making
exact forecasts. They enable experts in the appli-
cation domain to understand relationships between
variables, verify the trained model, and collaborate
with machine learning engineers in model fusion.
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Conclusion

We have presented an inductive method for
constructing robust Bayesian Polynomial Regres-
sion models in Bernstein form. This method in-
tegrates the strengths of Bayesian inference, the
support vector approach, and neurofuzzy model-
ing. The dual model conception—combining sup-
port vector expansion with Bernstein form – en-
ables PRIAM to remain competitive with modern
machine learning algorithms while also being suit-
able for knowledge representation in expert sys-

tems. The use of fuzzy rules with reduced com-
plexity allows domain experts to contribute at var-
ious stages of the modeling process, including such
tasks as prior setup, model validation, and knowl-
edge extraction.

Our experiments on real-world economic data-
sets demonstrate that PRIAM outperforms many
modern algorithms while adhering to a parsimo-
nious model construction logic. Notably, bivariate
dependencies appear only when the true underly-
ing function (as observed in synthetic datasets) ex-
plicitly includes a product of endogenous factors.
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Митник О. Ю.

РОБАСТНА МОДЕЛЬ БАЄСIВСЬКОЇ РЕГРЕСIЇ У ФОРМI
БЕРНШТЕЙНА

Тут представлений iндуктивний метод побудови робастних моделей баєсiвської полiномiальної
регресiї (БПР) у формi Бернштейна, що отримав назву ПРIАМ. ПРIАМ – це алгоритм, призна-
чений для визначення стохастичної залежностi мiж змiнними. Трикомпонентна природа ПРIАМ
поєднує переваги баєсiвського висновку, прозорiсть та лiнгвiстичну iнтерпретовнiсть нейронечi-
тких моделей у формi Бернштейна, робастнiсть методу опорних векторiв.

Алгоритм апробовано на вiдомих штучних наборах даних, а також на реальних моделях рiзного
розмiру та рiвня зашумленостi. Складено рейтинг, який демонструє переваги запропонованого
алгоритму за бiльшiстю метрик.

Ключовi слова: ПРIАМ, баєсiвський висновок, БПР, нейронечiтка модель, полiноми в формi
Бернштейна.
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