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DEVIATION OF THE INTERFACE BETWEEN TWO LIQUID
HALF-SPACES WITH SURFACE TENSION: MULTISCALE
APPROACH

This paper investigates the deviation of the interface between two semi-infinite liquid media under the
influence of surface tension and gravity using a multiscale analysis. The initial-boundary value problem
is formulated based on key dimensionless parameters, such as the density ratio and the surface tension
coefficient, to describe the generation and propagation of wave packets along the interface. A weakly
nonlinear model is employed to examine initial deviations of the interface, enabling the derivation of
integral solutions for both linear and nonlinear approximations. The linear approrimation captures the
fundamental structure of forward and backward waves, while nonlinear corrections account for higher-
order effects derived through multiscale expansions. These corrections describe the evolution of the wave
packet envelope, highlighting the interplay between dispersion, nonlinearity, and surface tension. In-
tegral expressions are provided for both linear and nonlinear solutions, including those illustrating the
role of even and odd initial deviations of the interface. Comparisons between linear and nonlinear ap-
prozimations emphasize their interconnectedness. The linear model defines the primary wave dynamics,
while the nonlinear terms contribute higher harmonics, refining the solutions and facilitating stability
analysis. The results reveal significant contributions from higher-order harmonics in determining the
dynamics of the interface. Furthermore, the study explores the conditions under which the nonlinear
envelope remains stable, including constraints on initial amplitudes to prevent instability. This research
opens new perspectives for further analysis of stability and wave dynamics at fluid interfaces using sym-
bolic computations. Potential applications include the study of wave behavior under various geometric
configurations and fluid properties. The findings contribute to advancing hydrodynamic wave modeling
and establish a foundation for future research in this field.

Keywords: internal waves, initial-boundary value problem, multiscale expansions, surface tension.

Introduction multiscale methods. Here, we will mention only
a few studies in this field. Nayfeh [8] derived an
envelope evolution equation (NLS) for waves on

fluid interfaces with surface tension. Grimshaw

The study of wave packets along the interface
of two semi-infinite fluids forms the basis for solv-

ing initial-boundary value problems (IBVPs) re-
lated to the generation and evolution of internal
waves. These include the transmissibility of wave
harmonics and modulational stability, or the so-
called Benjamin—Feir instability [1].

Benjamin-Feir instability in hydrodynamics has
been widely analyzed, focusing on stabilization
mechanisms and extreme wave formation. Segur
et al. [2] demonstrated dissipation stabilizes insta-
bility for waves with narrow bandwidth, confirmed
experimentally; Wu [3] supported this via simula-
tions, while Onorato et al. [4] linked the Benjamin-
Feir index to extreme wave probability. Zakharov
and Ostrovsky [5] explored nonlinear effects from
modulation instability, and El and Hoefer [6] re-
viewed dispersive shock waves. Armaroli et al. [7]
validated wave stabilization under wind-viscosity
balance through experiments.

It should be noted that wave propagation in
layered fluids has been effectively studied using
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and Pullin [9] examined modulational stability of
finite-amplitude interfacial waves, while Selezov et
al. [10] investigated nonlinear wave-packet propa-
gation using higher-order multiscale expansions.

This work extends the IBVP for the deviation
of the contact surface between two semi-infinite
fluids under surface tension, incorporating nonlin-
ear effects and advancing understanding of inter-
facial wave dynamics.

Statement of the IBVP

Problem statement. This paper investigates
the IBVP based on the solutions of problem [§]
concerning traveling wave packets of dispersive na-
ture. The following parameters were introduced as
the basis for dimensionless quantities: the accel-
eration due to gravity g, the density p;, and the
characteristic surface tension Tj.

The problem of wave packet propagation along
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the interface z = n(z,t) between two fluids of dif-
ferent densities was addressed, with the effects of
surface tension T is taken into consideration

Nt — Gjz = —anzPj at
$1,0—pda,i+(1—p)n+0.5a (Vé1)” =0.5ap (V)*

o\ —3/2
-T (1 + (anz) ) Nze =0 atz=an(z,t),
|V¢1| — 0 at

z = an(z, t),

z — 00,

where Q1 = {(z,2) : |2] < 400,—00 < z < 0},
Dy = {(z,2) : |z|] < 400,0 < 2z < 400}, p =
= pa/p1, pi(i = 1,2) are the densities of fluids in
Q;, @ = a/l is a small parameter characterizing
the steepness of the wave, a is the maximum de-
viation of the contact surface n(x,t), and [ is the
wavelength.

Let the initial condition at z = 0 be given as a
deviation F'(x) of the interface

n(z,0) = F(z). (2)

Preliminary results on traveling wave
packets. The result presented in this study is
based on previously obtained findings for traveling
wave packets derived using the method of multi-
scale expansions [8]. The results from the afore-
mentioned study, essential for solving the IBVP
(1)-(2), are presented below.

According to the method of multiple-scale ex-
pansions, the deviation of the interface is repre-
sented as a sum of the first harmonics

n(x,t) =ni(zo, x1, 22,0, t1,t2) (3)
+ anz(wo, 21, w2, to, t1, t2) + O(a?),

where x, = o™z, t, = o™t are the spatial and
temporal scaling variables.

In the first approximation, the deviation of the
contact surface caused by a forward wave n, is
expressed as the sum of the product of the com-
plex envelope A(x1,x2,t1,t2) and the carrier for-
ward wave exp i(kxg—wtp) and the product of their
conjugates,

ni = Aexp(i(kzo — wto)) + Aexp(—i(kzg — witp))

(4)
where, in the linear approximation, the envelope is
considered a constant value, as it cannot depend
on higher-order scales.

The solvability of the linear approximation
problem determines the dispersion relation, which
links w and k; let its two solutions be denoted as
w12 = :tW(k)

Here, we present the expression for the second
forward harmonic, derived in [8] from the linear

problem of the second approximation, in the form

ng = A(k,w) A% exp(2i(kzo — wty)) (5)
+ A(k, w)Z2 exp(—2i(kzg — wtp))

where the coefficient A(k,w) satisfies the condition
A(k,w) = Ak, —w).

In [8], it is also shown that the envelope A sat-
isfies an evolution equation in the form of a NLS

A — 051w Age = dic*w ' TA%A,  (6)

where ¢ = ¢ — W't and ¢ = ¢, J(k,w) is the
Benjamin-Feir index which in this system satisfies
the condition J(k,w) = J(k, —w).

The IBVP solution

Linear approzximation. Since the hydrody-
namic system allows the propagation of only cer-
tain types of harmonics (4) and (5), with the fre-
quency w and wavenumber k linked by the disper-
sion relation, and the envelope A governed by the
evolution equation (6), the problem arises of cor-
rectly specifying the initial shape F'(z) of the con-
tact surface n within the framework of the weakly
nonlinear model (1)-(2). Let the initial position of
the contact surface n(z,0) in the linear approxi-
mation take the form of a certain function f(x)

nlin(xvo) = f(x) (7)

On the one hand, the function f(z) can be repre-
sented as an integral using the Fourier expansion
over the frequency spectrum, followed by synthesis
based on this spectrum

flx) = (8)
+oo “+o0
%[/_ <217r 3 f(& exp(—ikf)d{) exp(ik:x)dk]
Considering equations (7) and (8), we have
Min(7,0) = (9)
+oo
3 (af(k) cos(kx) — by (k) sin(k:z)) dk,
where
I
0= 5= [ f@eoskeds, ()
1t ,
) =g [ F@sinkede. ()

On the other hand, taking into account the dis-
persion relation solution w; = 4+w(k), in the linear
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approximation, the oscillation of the contact sur-
face can be represented as an integral over the wave
numbers of the forward wave (4)

+oo
ny (z,t) = / (alm(k) exp(i(kz — w(k)t))

+agin (k) exp(—i(kz — w(k)t))) dk, (12)

and for the dispersion relation solution ws =
= —w(k) corresponding to the backward wave

+oo
ne () = / (alm(k)exp(i(kx—i—w(k;)t))

+@in (k) exp(—i(kx + w(k;)t))) dk  (13)

where aj, (k) are the unknown coefficients of the
linear approximation expansion of the interface de-
viation, which coincide for the forward n;f (z,t)
and backward 7, (z,t) waves due to the homo-
geneity of liquid media in both directions of wave
propagation.

It is obvious that

nlin(xvt) = nngn(x7t) + nl;n(x’t)'

Next, we obtain 7, (x,0) from (14) taking into
account (12) and (13)

(14)

+oo
Miin(,0) = 2/ (alm(k) exp(ikzx) (15)

+ apin (k) exp(—ikx)) dk.

Equating the expressions for the initial devia-
tion of the contact surface 7, (x,0) from (9) and
(15), we obtain

ain(k) = i(af(k) +ibys(k)).

Substituting formulas (10) and (11) into (16) we
obtain

(16)

“+oo
! / £(€) exp(ike)de,

:877T .

and substituting (17) into (12)-(14) gives the lin-
ear approximation of the contact surface deviation
in the following integral form

Qlin (k) (17)

1 +oo +oo
o | [ : F(&) exp(ik€)d¢ expi(kz — w(k)t)

—+oo

1 +oo[ “+o0

+ | F(&) exp(ik)dE expi(kxz+w(k)t)

—+oo

+ f(&) exp(—ik€)dE exp(—i(kx — w(k)t))} dk.

+ F(&) exp(—ik€)d€ exp(—i(kz —I—w(k)t))} dk.

or taking into account the formulae (10) and (11)

Niin (xv t) = U?{n(% t) + nﬁn(% t) (19)

where

+oo
nlim(m,t):% / <af(k) cos(kz F w(k)t) (20)

— 00

—by(k)sin(kx F w(k)t)) dk.

Nonlinear approximation. Let us proceed
to derive the nonlinear approximation of the con-
tact surface deviation. To this end, we consider
one of the solutions to the evolution equation (6)
and write it for both solutions of the dispersion
equation

Ay (t, k) = %aexp (iia2Wt) . (21)

where « is an arbitrary constant determining the
amplitude of the envelope, A, (¢, k) corresponds
to the forward wave with frequency wy = 4w(k),
and A_(t,k) to the backward wave with frequency
wo = —w(k).

Then, for wave packets traveling along the
contact surface, taking into account (4) and (5)
and also the fact that J(k,w) = J(k,—w) and
A(k,w) = A(k, —w), the contact surface deviation
caused by the forward n,,(z,t,k) and backward
n,,(x,t, k) waves at the wave number k are ex-
pressed as the sum of the harmonics

Tlfz (xv t, k) =
Az (t, k) exp(i(kz F w(k)t))
+ AL (t, k) exp(—i(kz F w(k)t))

(22)

+ alA(k,w(k)) (Ai (t, k) exp(2i(kz F w(k)t))

+ AL (L) exp(—zi(kmq:w(k)t))>+0(a2).

1
Assume that the coefficient 3@ in the expressions

(21) for the envelopes AL (t, k) is equal to the
complex coefficient aji, (k) and taking into account
(16), it can be expressed in terms of the coefficients
ay(k) and by (k) of the function f(z) expansion

a= ;(af(k) + ibf(k)>. (23)

Let us substitute the expressions for the envelope
(21) into (22) taking into account (23). After
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transformations, we obtain expressions for the non-
linear approximation of the forward %, (, ¢, k) and
backward 7, (z,t, k) traveling waves in the form of
real-valued expressions

nrfl('x’tvk) = (24)

—_

= [ay(k) cos(kz F &t) — by (k) sin(kz F @t)]

[\

+ %A(k,w(k)) ((a?p(k) — B2(k)) cos 2(kz T (k)t)
—2ay(k)bs(k)sin 2(kx:FCu(k)t)> +0(a?),

where
o w(k)

w(k)
Performing the synthesis of the traveling waves
(24) by the spectrum of wave numbers, we obtain
expressions for the nonlinear approximation of the
contact surface deviation n(z,t) in the form

S(k) = w(k) — (25)

n(z,t) =i (z,t) +ny (z,t) (26)
+a(ng (z,t) +ny (x,1)) +0(a?),

where

nE (2, t) = % /_ :C (af(k) cos(kaFor) (27)
— by (k) sin(kz F m))m

ny (z,t) = (28)

| oo

3/ Ak, w(k)) ((afc(k) - b?c(k)) cos 2(kxFo(k)t)

—2ay(k)by(k)sin2(kx F d}(k)t)) dk.

The expression (26), obtained for the interface de-
viation 7(x, t), contains the nonlinear contribution
(27) of the first harmonic 7 (z,t), which differs
from its linear approximation nljl.tn(x, t) in (20). Tt
additionally includes (28) the contribution of the
second harmonic 75 (z,t). Let us introduce the
terms

denoting the contributions of the first and second
harmonics to the nonlinear solution.

It should be noted that within the framework of
the nonlinear model, the synthesis operation over
the spectrum of traveling waves, namely, the first
and second harmonics, is mathematically valid,
since each of the traveling harmonic waves repre-
sents a solution to the linear approximations of the
problem at the corresponding order.

Let us now return to the question of the form of
the initial contact surface deviation F'(x), which in
the linear approximation we defined in (7) as some
function f(z). From (26)-(28), it is straightfor-
ward to obtain

F(z) =n(z,0) = (29)
+oo
[ [af(k) cos(kx) — by (k) sin(kz)

+ %A(k,w(k)) ((a‘;‘(k) — V3 (k)) cos 2(k)
—2ay(k)by(k)sin 2(kac)> ] dk+0(a?).

It is evident that
F(z) = f(z) + O(a),

i.e., the refined initial contact surface deviation dif-
fers from the specified initial deviation in the linear
approximation by a small quantity.

Let us consider the stability conditions for the
envelope in the form of the solution (21) discussed
here. The frequency (25) in the nonlinear approxi-
mation (24) taking into account (23) is in the form

&(k) = w(k)

- i (afc(k) — b3(k) + 2iaf(k)bf(k))

(30)
J(k, w(k))
w(k)

Expression (30) imposes constraints on the enve-
lope amplitude where we observe that an imag-
inary term appears in the exponent. The pres-
ence of this term leads to instability. This can
be avoided by setting to zero either the imaginary
bs(k) or real ay(k) part of a, which can be easily
achieved by using an even or odd function f(z),
respectively.

Special cases. It is evident that in the case
of an even function f(z) (below, the index ‘ev* in-
dicates the values corresponding to this case), we
can transition to simpler expressions with integrals
over (0, +00)

1 [t
a5 (k) =~ / F(€) cos kede, b5 (k) = 0,
0
in the linear approximation
ev 1 oo d
agi, (k) = E/o f(&) cos kEdg,

“+o0
i) = [ ap ).
X (cos(km — w(k)t) + cos(kx + w(k)t)) dk,

and in the nonlinear approximation

0w, t) = i’ (z, 1) + 15" (2, 1),
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where

+oo
net) = [ a )
0

X <cos(k:1:d;€” (k)t) +cos(ka:+dje”(k)t)) dk,

1 [T
775”(96775):1 | Ak, w(k))(a$)? (k) x

X <COS 2(kx—w° (k)t)+cos 2(kx+o* (k)t)> dk,

w a’ (k
@e”(k):w(k)—(ae”)2‘w7 o f2( )

A similar result can be easily obtained for another
specific case when the function f(z) is odd.

Conclusion and further developments

Linear and weakly nonlinear integral expres-
sions for waves propagating between two liquid
half-spaces, induced by the initial deviation of the
contact surface, have been derived. A limitation
on the initial position of the contact surface devi-
ation within the model has been noted, stemming
from the characteristics of the solution obtained
using the method of multiscale expansions. The
prospect of this study lies in the potential to obtain
solutions for various geometric and physical prop-
erties using symbolic and numerical computation
methods. In particular, based on the solutions pre-
sented here and the Benjamin-Feir stability condi-
tion, it will be possible to derive the conditions for
the emergence of rogue waves.
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BIIXWJIEHHS MMOBEPXHI KOHTAKTY IBOX PIIKMX
HATIIBITPOCTOPIB 3 TTIOBEPXHEBUM HATATOM:
BATATOMACIIITABHI TITIXI/T

Ila cTaTTsa npucBsAYeHa JOCTIIXKEHHIO BiIXUJIEHHS TOBEPXHI KOHTAKTY MiXK JIBOMAa HaIliBHECKIHYEHHU-
MH PiJHHAMHE IIi/T BILTHBOM CHJI IOBEPXHEBOIO HATATY Ta IPaBiTaIlil 3 BUKOPUCTAHHIM OAaraTroMaciirabHo-
ro ananizy. [louarkoBo-kpaiioBa 3aa4a 6a3y€TbCsd HA KJIIOYOBUX O€3PO3MIPHUX [MapaMerpax, 30KpemMa Ha
BiIHOITIEHH] TYCTHH 1 KOeDIIi€HTI TTOBEPXHEBOTO HATATY, JJIsi OMKUCY T€HEPAIlil Ta, MOMMUPEHHST XBUJIBOBUX
MMaKeTiB y3/I0BK MOBEPXHI KOHTAKTY. 3a JOMOMOTOI0 CJIA0KO HEJHIHHOT MOIEi JTOCTiIKYIOTh TO9aTKO-
Bl BiIXWJIEHHS TTOBEPXHI KOHTAKTY, IO /I03BOJISE€ OTPUMATH iHTErpaJibHI PO3B’SI3KW I SK JIHIAHOTO,
Tak i HeminiftHOrOo HabaMKeHb. JliHiliHe HAOIMKEHHS OMUCYE OCHOBHY CTPYKTYPY MPsMOI Ta 3BOPOTHOL
XBHUJIb, TOJI SK HEJIHIWHI MOMPaBKH BPAXOBYIOTH €(EKTH BUINOIO MOPSIKY, SIKi BUBOIATHCI 33 IOMO-
MOrow Gararomaciirabaux poskaaais. 1i mompaBku XapakTepu3ylOTh €BOJIOIII0 O0BITHOI XBUIBOBOIO
TTaKeTa, BUSABJISAIOUN B3a€MOJIII0 MiXK JIMCIIEPCi€ro, HEMIHIMHICTIO Ta MoBepxHeBUM HaTsaroMm. HamaoThes
iHTerpajibHi BUpa3w I JIHITHEX 1 HeJiHIHHWX PO3B’A3KiB, 30KpEMa TAKUX, M0 JEMOHCTPYIOTH POJIb
MapHAX 1 HEMAPHUX MOYATKOBUX BiIXMJ/IEHb MOBEPXHI KOHTAKTY. IIOpiBHAHHS MiXK JTiHIAHUM 1 HemiHi#-
HUAM HAOJIMKEHHSIMHU IiIKPECTIOI0TH 1X B3a€MO3B A30K. JIiHiiiHA MOEe/Ih BCTAHOBJIIOE OCHOBHY JHHAMIKY
XBHJIb, TOJI K HEJIHIWH] 9/I€HN H0Jal0Th TAPMOHIKH BHUIIOIO MOPSIKY, YTOIHIOIOYN PO3B’I3KHU i 103BO-
JITIOYW TIPOBOJUTH aHaJi3 cTikocTi. Ili pe3yabrary BUABIAIOTHL CYTTEBI BHECKH BiJl TAPMOHIK BHUIIIOTO
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MOPSIAKY v BU3HAYEHHS NWHAMIKH MOBEPXHI KOHTAKTYy. KpiM TOro, y MOCTiIKeHHI PO3LJISHYTO YMOBH,
3a AKUX HeMiHifiHa 00BiIHA 3aUMIAETHCA CTIHIKOI0, 30KpeMa OOMEKEHHsT Ha MTOYATKOBI aMILTITY/Id, 1100
3amobirTH BUHUKHEHHIO HeCTIHKOCTI. J1oCiIKennsa BiAKPUBAE HOBI TIEPCIEKTUBN IJIST TIOIAJIBINIOTO aHa-
JIi3y CTIHKOCTI Ta AUHAMIKYM XBHUJIb HA MEXKi MOy PiAWH 3a JOMOMOIOK CHUMBOJBHUX O0UmCIeHb. 11o-
TEHIIiiHI 3aCTOCYBAHHS TEPeI0avaA0Th MO/IAJbINE BUBYEHHS MOBEIIHKN XBU/Ib 33 PI3HUX T€OMETPUIHUX
nmapaMerpiB cucTeMu Ta BiacTuBocTeil pigud. OTpuMani pe3ysibTaTh CIPULSIOTH PO3BUTKY MOJIEIIOBAHHS
riIpoIMHAMIYHAX XBWJIb 1 3aKJ1aJIaI0Th OCHOBY JIjis TOJAIBIINX JOCHIIKEeHb y 1l rajy3i.

KurouoBi ciioBa: BHyTpIIIHI XBHJIi, MOYATKOBO-KpaitoBa 3amatda, OaraToMaciiTabHI pO3BUHEHHSI,
MOBEPXHEBUN HATAL.
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