
УДК 517.9

Кашпiровський О. I., Митник Ю. В.
DOI: 10.18523/2617-70808202510-18

ПРО ДЕЯКI ВЛАСТИВОСТI МАЙЖЕ ПЕРIОДИЧНИХ
ФУНКЦIЙ

Дослiджуються достатнi умови показникiв λn та коєфiцiєнтiв Фур’є, при виконаннi яких
майже перiодичнi функцiї f(t) з простору Безиковича B2 неперервнi, неперервно-диференцiйовнi
та голоморфнi.

У випадку показникiв λn, що мають степеневу асимптотику λn = L(nα + εn), де L ∈ R1,
α > 0, εn → 0 при n → +∞ отримано аналог теореми Соболєва про вкладення.

Для показникiв λn, що за n → +∞ зростають повiльнiше довiльного додатного степеня n,
описано клас функцiй з простору Безиковича B2, що мають аналiтичне продовження у пiвпло-
щину Re s > a ≥ 0. До таких функцiй належить дзета-функцiя Рiмана ζ(s).

Для функцiй з B2, у яких показники λn прямують до нуля, встановленi достатнi умови
аналiтичного продовження до цiлих функцiй 1-го експоненцiального порядку.

Ключовi слова: майже перiодична, Бор, простiр Безиковича, дзета-функцiя Рiмана, ряд
Фур’є, ряд Дiрiхле, голоморфнiсть.

Якщо h(t) — сума двох неперервних перiо-
дичних функцiй f(t) i g(t) з неспiврозмiрними
перiодами p i q, то h(t) вже не перiодична. Ра-
зом з тим у деякому розумiннi h(t) лишається
близькою до перiодичної, або, як прийнято го-
ворити, майже перiодичною функцiєю.

За теоремою Кронекера [16], для довiльно-
го δ > 0, для неспiврозмiрних чисел p i q iснує
безлiч пар натуральних чисел m i n, таких, що
|mp− nq| < δ. Звiдси випливає, що число

τ =
1

2
(mp+ nq)

є для h(t) так званим майже перiодом, тобто

|h(t+ τ)− h(t)| < ε, ∀t ∈ R1.

Число ε > 0 в цiй оцiнцi можна зробити як зав-
годно малим завдяки вибору малого δ > 0 та
неперервностi функцiй f(t) i g(t).

Основи теорiї майже перiодичних функцiй
закладено в монографiях Г. Бора [2], Безико-
вича [1], Б. Левiтана [16] та iнших. Оскiльки
простори таких функцiй несепарабельнi, то їхнi
властивостi суттєво складнiшi за вiдповiднi вла-
стивостi перiодичних функцiй [10; 13]. З суча-
сним станом теорiї майже перiодичних функцiй
можна ознайомитись в оглядах [3; 6; 21].

У цiй роботi вивчаються достатнi умови, при
виконаннi яких гладкi вiдносно оператора ди-
ференцiювання майже перiодичнi функцiї з про-
стору Безиковича B2 є майже перiодичними за
Бором або аналiтичними майже перiодичними
функцiями. Дещо близькi питання розгляда-
лись в [20].

Нагадаємо, що за означенням Г. Бора непе-
рервна на R1 функцiя f(t) рiвномiрно майже пе-
рiодична, якщо для довiльного додатного ε > 0
iснує число l = l(ε), таке, що в кожному iнтер-
валi (a, a + l) iснує хоча б одне число τ , таке,
що

|f(t+ τ)− f(t)| < ε, ∀t ∈ R1.

Число τ називають ε майже перiодом функцiї
f(t). Надалi такi функцiї будемо називати май-
же перiодичними за Бором. З цього означення
випливає, що майже перiодичнi функцiї за Бо-
ром обмеженi та рiвномiрно неперервнi на R1.

Для визначення бiльш широкого класу май-
же перiодичних функцiй, а саме простору
Безиковича B2 [9] розглянемо множину Λ
всiх можливих скiнченних лiнiйних комбiнацiй
f(t) =

∑n
k=1 ake

iλkt уявних експонент

eiλt, λ ∈ R1 (1)

де ak ∈ C1, λk ∈ R1, n ∈ N.
Для функцiй f, g ∈ Λ визначимо скалярний

добуток

(f, g)B2 = lim
T→+∞

1

2T

T∫
−T

f(x)g(x) dx. (2)

Простiр Безиковича B2 є поповненням Λ вiд-
носно скалярного добутку (2). Простiр B2 є не-
сепарабельним гiльбертовим простором. Фун-
кцiї з B2 будемо надалi називати майже перi-
одичними за Безиковичем.

Система функцiй (1) утворює в просторi B2

континуальний ортонормований базис, оскiльки
для всiх λ, µ ∈ R1 таких, що λ ̸= µ
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(eiλt, eiµt)B2 =

= lim
T→+∞

1

2T

∫ T

−T

eiλte−iµt dt =

= lim
T→+∞

1

2T

∫ T

−T

ei(λ−µ)t dt =

= lim
T→+∞

1

2T
· 1

i(λ− µ)
·

·
(
ei(λ−µ)T − e−i(λ−µ)T

)
=

= lim
T→+∞

sin
(
(λ− µ)T

)
(λ− µ)T

=

= lim
x→+∞

sinx

x
= 0.

Вiдповiдно при λ = µ маємо

(eiλt, eiµt)B2 =

= lim
T→+∞

1

2T

T∫
−T

eiλteiλt dt =

= lim
T→+∞

1

2T

T∫
−T

dt = 1.

Таким чином:

(eiλt, eiµt)B2 = δλµ =

{
0, якщо λ ̸= µ,

1, якщо λ = µ.

Кожна функцiя f(t) з B2 розкладається у
ряд Фур’є за функцiями eiλt iз системи (1)

f(t) =
∑
λ∈R1

aλe
iλt, aλ = aλ(f) = (f, eiλt)B2 .

Для кожної функцiї f ∈ B2 у цьому рядi не
бiльш нiж злiченна кiлькiсть доданкiв. Отже,
ряд (1) для кожної функцiї з B2 має вигляд

f(t) =

+∞∑
k=1

ake
iλkt, (3)

де {λk}k∈N — деяка послiдовнiсть попарно рi-
зних дiйсних чисел

∑+∞
k=1 |ak|2 < +∞.

Для того, щоб функцiя f(t) була майже перi-
одичною за Бором, достатньо, щоб її ряд Фур’є
(3) збiгався абсолютно.

На многовидi Λ визначимо диференцiальний
оператор

Ã = i
d

dt
.

Покажемо, що цей оператор симетричний на Λ.
Нехай f(t) i g(t) довiльнi функцiї з Λ. Тодi, про-
iнтегрувавши частинами, отримаємо

T∫
−T

(
i
d

dt
f(t)

)
g(t) dt =

= i

T∫
−T

f ′(t)g(t) dt =

= ∆(f,g, T )− i

T∫
−T

f(t)g′(t) dt =

= ∆(f,g, T ) +

T∫
−T

f(t)ig′(t) dt,

де ∆(f, g, T ) = i(f(T )g(T )− f(−T )g(−T )).

Оскiльки уявнi експоненти eiλt мають одини-
чнi модулi, то з нерiвностi Кошi–Буняковського
отримаємо:

|∆(f, g, T )| = 2max
t∈R1

∣∣∣f(t) g(t)∣∣∣ =
= max

t∈R1

∣∣∣∣∣
(

n∑
k=1

ake
iλkt

)
·

(
n∑

k=1

bke
iλkt

)∣∣∣∣∣ ≤
≤

(
n∑

k=1

|ak|2
) 1

2

·

(
n∑

k=1

|bk|2
) 1

2

=

= ∥f∥B2 · ∥g∥B2 .

Звiдси випливає, що

lim
T→+∞

1

2T
∆(f, g, T ) = 0,

а отже, i симетричнiсть оператора Ã, тобто
(Ãf, g)B2 = (f, Ãg)B2 .

Оскiльки експоненти (3) — власнi функцiї
оператора Ã (тобто Ãeiλt = λeiλt, для кожно-
го λ ∈ R1), оператор Ã допускає самоспряжене
розширення A, для якого область визначення
D(A) складається з усiх функцiй f(t) iз просто-
ру B2, для яких коефiцiєнти ak розкладу в ряд
Фур’є задовольняють умову

+∞∑
k=1

|λk|2 · |ak|2 < +∞. (4)

Звiдси випливає, що для m ∈ N належнiсть f ∈
∈ B2 до D(Am) означає

+∞∑
k=1

|λk|2m · |ak|2 < +∞. (5)
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Видiлимо в просторi Безиковича B2 сепара-
бельний пiдпростiр T -перiодичних функцiй f(t),
для яких f(t + T ) = f(t), де T > 0 — фi-
ксоване число. Цей пiдпростiр можна отото-
жнити з сепарабельним гiльбертовим просто-
ром L2(0, T ), оскiльки скалярний добуток (2) на
T -перiодичних функцiях збiгається зi скаляр-
ним добутком у L2(0, T )

(f, g)L2(0,T ) =
1

T

T∫
0

f(t) g(t) dt.

Звуження AT оператора A на L2(0, T ) має орто-
нормований власний базис{

e
2πint

T

}
n∈Z

:

AT e
2πint

T = i
d

dx
e

2πint
T = −2π

T
ne

2πint
T .

Область визначення D(AT ) збiгається з части-
ною простору Соболєва W 1

2 [0, T ] [4] зi скаляр-
ним добутком

(f, g)W 1
2 [0,T ] = (f, g)L2[0,T ] + (f ′, g′)L2[0,T ];

D(AT ) утворює в просторi Соболєва W 1
2 [0, T ]

замкнений пiдпростiр корозмiрностi 1. Згiдно з
теоремою про вкладення [11] функцiї D(AT ) ⊂
W 1

2 [0, T ] абсолютно неперервнi.
Наступна теорема узагальнює теорему Собо-

лєва про вкладення на функцiї f ∈ B2, для яких
послiдовнiсть показникiв {λn}n∈Z має степеневу
асимптотику

|λn| = Lnα(1 + εn), L, α > 0. (6)

Теорема 1. Якщо показники λn, n ∈ Z функцiї
f(t) мають за n → +∞ асимптотику (6) i f ∈
∈ D(Am), m > 1

2α , то ряд Фур’є функцiї f(t)
є рiвномiрно збiжним, а f(t) є майже перiоди-
чною за Бором.
Доведення. Оцiнимо зверху залишок ряду
Фур’є

rN (f, t) =
∑

|n|>N

ane
−iλnt

для функцiї f ∈ D(Am) за допомогою нерiвностi
Кошi—Буняковського:

|rN (f, t)| ≤

≤
( ∑
|n|>N

λ2m
n |an|2

) 1
2 ·
( ∑
|n|>N

1

λ2m
n

) 1
2 =

= ∥Amf∥B2 · (
∑

|n|>N

1

λ2m
n

) 1
2 .

Сума
+∞∑

|n|>N

1

|λn|2m

прямує до нуля за N → +∞, оскiльки внаслi-
док (6) її можна оцiнити зверху залишком суми
збiжного ряду

C ·
+∞∑

n=N+1

1

n2αm
,

константа C залежить вiд m,L, α та max
n∈Z

|εn|,

2αm > 2α · 1

2α
= 1.

Таким чином, ряд Фур’є функцiї f(t) є рiвно-
мiрно i абсолютно збiжним на R1, а отже фун-
кцiя f(t) є майже перiодичною за Бором. Тео-
рему доведено.

Для iлюстрацiї доведеної теореми розгляне-
мо функцiю

f(t) =

+∞∑
n=1

1

n
6
5

e−in
1
6 t.

Ця функцiя майже перiодична за Безиковичем,
оскiльки

∥f∥2B2 =

+∞∑
n=1

|an|2 =

+∞∑
n=1

( 1

n
6
5

)2
= ζ
(12
5

)
< +∞.

f(t) майже перiодична за Бором, оскiльки вона
оцiнюється зверху збiжним рядом

|f(t)| ≤
+∞∑
n=1

1

n
6
5

= ζ
(6
5

)
< +∞.

Показники λn = n
1
6 мають за n → +∞ асим-

птотику (6) з параметрами α = 1
6 , L = 1, εn = 0.

Визначимо, за яких m f ∈ D(Am).

∥f∥2B2 =

+∞∑
n=1

(
n

m
6

1

n
6
5

)2
=

+∞∑
n=1

n
m
3 − 12

5 .

Цей ряд є збiжним, якщо m
3 − 12

5 < −1. Звiдси
отримаємо 0 < m < 21

5 .
Оскiльки

1

2α
=

1

2 · 1
6

= 3 <
21

5
,

то для f(t) справедлива теорема 1 за m = 4.
Доведена теорема буде також справедливою

i для функцiй, майже перiодичних за Безикови-
чем, якщо послiдовнiсть модулiв їхнiх показни-
кiв |λn| зростає за |n| → +∞ швидше, нiж до-
вiльний додатний степiнь |n|. Так, за показникiв

λn = Lqn(1 + εn), (7)
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де n ∈ N, q > 1, L ∈ R1, L ̸= 0, εn → 0
за n → ∞ для f ∈ D(A) маємо

+∞∑
n=1

|anqn|2 < +∞, |an| < Cq−n

за деякого C > 0. Звiдси випливає абсолютна
збiжнiсть ряду Фур’є такої функцiї та вiдповiд-
но її майже перiодичнiсть за Бором.

Для вказаних показникiв типу (7) ряд Фур’є

f(t) =

+∞∑
n=1

1

n2
eiλnt

рiвномiрно збiгається до майже перiодичної за
Бором функцiї, яка неперервна, але недиферен-
цiйована функцiєю, як i вiдома функцiя Веєр-
штраса [19]

w(t) =

+∞∑
n=1

aneiq
nt,

де q > 1 > a > q−1.
Розглянемо майже перiодичнi функцiї з B2,

у яких послiдовнiсть показникiв λn прямує до
нескiнченностi повiльнiше будь-якого додатного
степеня n. Належнiсть такої функцiї до перети-
ну

+∞⋂
m=1

D(Am)

областей визначення всiх натуральних степенiв
оператора A не є достатньою умовою її непе-
рервностi. Необхiдною (але не достатньою) умо-
вою майже перiодичностi за Бором є аналiти-
чнiсть цiєї функцiї вiдносно оператора A в B2,
тобто збiжнiсть ряду

+∞∑
n=1

∥Anf∥σn < +∞

за деякого додатнього σ [7; 12; 14] й iснування
аналiтичного продовження в комплексну пло-
щину.

Обмежимось розглядом майже перiодичних
функцiй f(s), s = σ + it, аналiтичних у деякiй
пiвплощинi σ ≥ σ0. Нагадаємо, що голоморфну
в пiвплощинi σ ≥ σ0 функцiю f(s) називають
аналiтичною майже перiодичною функцiєю [16],
якщо для довiльного додатного ε > 0 iснує таке
l(ε), що в кожному iнтервалi (a, a+ l(ε)), a ∈ R1

iснує хоча б одне число τ , таке, що

|f(s+ iτ)− f(s)| < ε

для усiх s iз пiвплощинi Re s = σ ≥ σ0. Вiдпо-
вiдно, за кожного фiксованого σ ≥ σ0 функцiя

f(σ+it) майже перiодична за Бором за змiнною
t. До того ж число τ — майже перiод одночасно
для всiх σ ≥ σ0.

Для аналiтичних у пiвплощинi Re s ≥ σ0

майже перiодичних функцiй розглядають роз-
винення в ряд Дiрiхле

f(s) =

+∞∑
n=1

ane
−λns =

+∞∑
n=1

ane
−λn(it+σ),

де λn — монотонно зростаюча послiдовнiсть до-
датних чисел.

За кожного фiксованого σ ≥ σ0 ряд Дiрiхле
можливо переформатувати в ряд Фур’є функцiї
f(σ + it):

f(σ + it) =

+∞∑
n=1

bn(σ)e
iλnt, bn(σ) = ane

−λnσ.

Для послiдовностi показникiв λn = lnn ряди Дi-
рiхле

+∞∑
n=1

ane
−s lnn =

+∞∑
n=1

ann
−σ · n−it

збiгаються до аналiтичної майже перiодичної
функцiї f(s) у пiвплощинi Re s ≥ σ0, якщо чи-
словий ряд

+∞∑
n=1

an
nσ0

збiгається абсолютно.
До таких функцiй вiдносять дзета-функцiю

Рiмана [18]:

ζ(s) =

+∞∑
n=1

1

ns
.

Її ряд Дiрiхле абсолютно збiгається у вiдкритiй
пiвплощинi Re s > 1. Отже, ζ(s) — аналiтична
майже перiодична функцiя в замкнутих пiвпло-
щинах Re s ≥ 1 + ε, ε > 0.

За Re s = σ ∈
(
1
2 , 1
]
, функцiя ζ(s) майже пе-

рiодична за Безиковичем за змiнною t = Im s,
оскiльки ряд квадратiв модулiв коефiцiєнтiв
Фур’є за σ > 1

2 збiжний:

+∞∑
n=1

1

n2σ
= ζ(2σ) < +∞.

Оскiльки в точцi s = 1 функцiя Рiмана має
полюс 1-го порядку [18], то для дослiдження
ζ(s) за 0 < σ ≤ 1 Л. Ойлер помножив ζ(s) на цi-
лу перiодичну функцiю η(s) = 1− 21−s. Оскiль-
ки η(1) = 0, для добутку ζ̃(s) = η(s)ζ(s) точка
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s = 1 виявилася регулярною точкою. Ряд Дiрi-
хле для ζ̃(s) має вигляд:

ζ̃(s) =

+∞∑
n=1

(−1)n+1

ns
. (8)

Цей ряд абсолютно збiжний за σ > 1. Покаже-
мо, що (8) умовно збiжний за 0 < σ ≤ 1. За
s = 1 й 0 < σ ≤ 1 маємо збiжний знакозмiнний
ряд Лейбнiца. Зробимо в рядi (8) перегрупува-
ння

ζ̃(s) = −
+∞∑
k=1

(
(2k)−s − (2k − 1)−s

)
. (9)

Доданками в рядi (9) є рiзницi ∆k значень
комплекснозначної функцiї u−s дiйсної змiнної
u в точках u = 2k i u = 2k − 1, k = 1,+∞.

Оскiльки

d

du

(
u−s

)
=− su−s−1 =

=− su−σ−1 (cos(t lnu)− i sin(t lnu)) ,

то, застосувавши до дiйсних та уявних частин
цих рiзниць теорему Лагранжа, отримаємо для
них оцiнки:

|∆k| ≤ 2|s| · k−σ−1. (10)

Оскiльки σ + 1 > 1, то ряд (9) абсолютно
збiжний за σ > 0, а ряд (8) умовно збiжний за
0 < σ ≤ 1. За 0 < σ ≤ 1 ряди (8) i (9) збiгаю-
ться в смузi 0 < σ ≤ 1 нерiвномiрно, тому що
множник |s| в оцiнцi (10) необмежений, але збi-
жнiсть рядiв (8) й (9) рiвномiрна на компактних
пiдмножинах смуги 0 < σ ≤ 1. Звiдси випливає,
що в смузi 0 < σ ≤ 1 функцiї ζ(s) i ζ̃(s) не май-
же перiодичнi за Бором, проте вони голоморфнi
у цiй смузi.

У наступнiй теоремi властивостi ζ̃(s) уза-
гальненi на досить широкий клас голоморфних
майже перiодичних функцiй.
Теорема 2. Для довiльної строго монотон-
но зростаючої послiдовностi додатних чисел
{λn}n∈N, λn → +∞ ряд Дiрiхле

+∞∑
n=1

(−1)ne−λns (11)

умовно збiгається у пiвплощинi Re s > 0 до го-
ломорфної функцiї φ(s). Ця збiжнiсть рiвно-
мiрна в секторах

| arg(s− ε)| ≤ θ, 0 ≤ θ <
π

2
, ε > 0.

Крiм того:

а) Якщо

lim
n→+∞

λn

lnn
= α > 0,

то за σ > 1
2α функцiя φ(σ + it) за змiн-

ною t майже перiодична за Безиковичем.
А в пiвплощинах σ > 1

α + ε, ∀ε > 0 ряд
(11) збiгається абсолютно й рiвномiрно,
а φ(s) — аналiтична майже перiодична
функцiя.

б) Якщо

lim
n→+∞

λn

lnn
= +∞,

то для будь-якого ε > 0 ряд (11) збiга-
ється абсолютно й рiвномiрно в пiвпло-
щинi σ > ε. У цiй пiвплощинi φ(s) є ана-
лiтичною майже перiодичною функцiєю.

в) Якщо

lim
n→+∞

λn

lnn
= 0,

то для усiх s, таких, що σ > 0, ряд (11) є
розбiжним абсолютно, i за кожного σ >
> 0 функцiя φ(σ+ it) не є майже перiоди-
чною за Безиковичем.

Доведення. За s = ε, ε довiльне мале додатне
число, ряд (11)

φ(ε) =

+∞∑
n=1

(−1)ne−λnε

є альтернуючим рядом Лейбнiца, а отже є умов-
но збiжним. Тодi за узагальненням теореми
Абеля на випадок рядiв Дiрiхле [17] ряд (11)
умовно збiгається в пiвплощинi Re s > 0. У ко-
жному секторi

| arg(s− ε)| ≤ θ, 0 ≤ θ <
π

2

збiжнiсть є рiвномiрною.
Враховуючи, що ε > 0 довiльне, маємо умов-

ну збiжнiсть у пiвплощинi Re s > 0.
Для доведення пунктiв а)–в) оцiнимо моду-

лi доданкiв e−λns ряду (11) й дослiдимо його на
абсолютну збiжнiсть i збiжнiсть суми квадратiв
його модулiв.

У випадку а) для достатньо великих n

λn > (α− ε) lnn, ε > 0,

|e−λns| ≤ e−σ(α−ε) lnn = n−σ(α−ε).

Тодi за σ > 1
2α й достатньо малого ε > 0, й де-

якого C > 0

|e−λns| ≤ Cn−σ(α−ε) ≤ Cn− 1
2−ε1 ,
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де ε1 > 0. Звiдси випливає збiжнiсть ряду

+∞∑
n=1

|e−λns|2 < +∞.

Отже, за σ > 1
2α функцiя φ(σ + it) є май-

же перiодичною за Безиковичем за змiнною t.
Аналогiчно, за σ > 1

α отримаємо:

|e−λns| ≤ Cn−1−ε1 .

Тодi в пiвплощинi σ > 1
α ряд (11) абсолютно

збiжний, у пiвплощинах σ > 1
2α + ε збiжнiсть

рiвномiрна, а φ(s) — аналiтична майже перiо-
дична функцiєю.

У випадку б) за великих n i довiльного M >
> 0

λn > M lnn.

Тодi для σ < ε, де ε — як завгодно мале до-
датнє число, будемо мати

|e−λns| < Cn−1−ε1

за деяких додатних C > 0 i ε1 > 0.
Тодi ряд (11) абсолютно збiжний у пiвпло-

щинi σ > 0. До того ж для будь-якого ε > 0 у
пiвплощинах σ > ε збiжнiсть рiвномiрна, а φ(s)
— аналiтична майже перiодична функцiя.

У пунктi в) навпаки за великих n i довiльних
малих ε > 0 маємо

λn < ε lnn.

Звiдси випливає, що за довiльних σ > 0, iснують
додатнi константи C i ε1 > 0, такi, що

|e−λns| ≥ Cn− 1
2+ε1 .

Звiдси випливає абсолютна розбiжнiсть ряду
(11) у пiвплощинi Re s > 0, а також розбiжнiсть
суми квадратiв модулiв членiв ряду (11). Отже,
за жодного σ > 0 функцiя φ(s) не майже перiо-
дична за Безиковичем. Теорему доведено.

У розглянутих ранiше закладах майже перi-
одичнi за Безиковичем функцiї є голоморфними
або мероморфними. Так, ζ(s) має один простий
полюс [18]:

ζ(s) =
1

s− 1
+ ζ0(s),

де ζ0(s) — цiла функцiя вiд s. Похiднi

ζ(m)(s) =
(−1)mm!

(s− 1)m+1
+ ζ

(m)
0 (s), m ∈ N

мають у точцi σ = 1 полюс m + 1-го порядку.
Розвинення в ряд Дiрiхле для ζ(m)(s) має ви-
гляд

ζ(m)(s) =

+∞∑
n=2

(− lnn)m

ns
.

З цього розвинення випливає, що за всiх нату-
ральних m i Re s > 1

2 похiднi ζ(m)(s) є майже
перiодичними за Безиковичем, а за σ = Re s >
> 1 аналiтичними майже перiодичними функцi-
ями. Така властивiсть, очевидно, зберiгається й
за зсуву аргументу вздовж уявної вiсi, тобто для
функцiй ζ(s− ia) i ζ(m)(s− ia), a ∈ R1.

Нехай {tj}j=0,+∞ — послiдовнiсть попарно
рiзних дiйсних чисел, яка скрiзь щiльна в R1.
Розглянемо ряд з функцiями ζ(s− tj)

Φ(s) =

+∞∑
j=0

3−jζ(s− itj), (12)

якому вiдповiдає ряд Дiрiхле

φ(s) =

+∞∑
n=1

k(n) · n−s, де k(n) =

∞∑
j=0

3−j · nitj .

Оскiльки
∑+∞

j=1 3
−j =

1

2
, то

1

2
≤ |k(n)| ≤ 3

2

для усiх натуральних n. Звiдси випливає збi-
жнiсть за нормою B2 ряду (12) за Re s > 1

2 i
абсолютна збiжнiсть за Re s > 1.

У смузi 1
2 < Re s < 1 i пiвплощинi Re s > 1 су-

ма ряду Φ(s) — голоморфна функцiя. Оскiльки
в точках 1 − itj функцiї ζ(s − itj) мають про-
стий полюс i точки 1− itj утворюють на прямiй
Re s = 1 скрiзь щiльну множину, то за набли-
ження значень s до цiєї прямої значення Φ(s)
необмежено зростають:

lim
σ→+1

Φ(σ + it) = ∞.

Звiдси випливає, що за пiдходi до прямої
Re s = 1 функцiя Φ(s) має границю в класi уза-
гальнених функцiй [5]. Внаслiдок цього, на всiй
прямiй Re s = 1 функцiя Φ(1 + it) є узагаль-
неною сингулярною функцiєю, оскiльки не має
жодної точки неперервностi. Отже, ми отрима-
ли узагальнену сингулярну функцiю, яка одно-
часно майже перiодична за Безиковичем. Похi-
днi Φ(m)(1 + it), m ∈ N у сенсi теорiї узагальне-
них функцiй [8] також будуть належати до B2.

Iншого типу цiкавi явища маємо за дослi-
дженнi майже перiодичних функцiй з показни-
ками λn, якi монотонно прямують до нуля. За
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великих n уявнi експоненти eiλnt системи (1) ма-
ють асимптоти

eiλnt = 1 + εn(t), де

εn(t) = iλnt+O((λnt)
2).

Оскiльки послiдовнiсть εn(t) прямує до нуля
рiвномiрно за t ∈ [−A,A] за кожного A > 0, то
на цих iнтервалах ряди Фур’є

+∞∑
n=1

ane
iλnt

будуть збiгатися або розбiгатися одночасно iз
числовим рядом

∑+∞
n=1 an.

Якщо показники λn функцiї f ∈ B2 моно-
тонно прямують до нуля, то й усi її похiднi
f (m),m ∈ N також належать до B2, причому ря-
ди Фур’є для похiдних

f (m)(t) = im
+∞∑
n=1

anλ
m
n eiλnt

збiгаються швидше, нiж ряд Фур’є самої f(t). У
той же час ряд Фур’є первiсної вiд f

+∞∑
n=1

anλ
−1
n eiλnt

збiгається повiльнiше, нiж її ряд Фур’є.
Так, наприклад, за λn = 1

n майже перiоди-
чна за Безиковичем функцiя

h(t) =

+∞∑
n=1

1

n
e

it
n

за t = 0 має розбiжний ряд Фур’є, оскiльки
утворений з її коефiцiєнтiв числовий ряд є гар-
монiйним рядом

+∞∑
n=1

1

n
= +∞.

Виявляється, що ряди Фур’є похiдних

h(m)(t) = im
+∞∑
n=1

1

nm+1
e

it
n

збiгаються абсолютно на усiй дiйснiй осi. Збi-
жнiсть є рiвномiрною на компактах з R⊮.

Оскiльки

h(m)(0) = im
+∞∑
n=1

1

nm+1
= imζ(m+ 1)

i за m ≥ 2

1 < ζ(m+ 1) < ζ(2) =
π2

6
< 2,

то h′(t) має аналiтичне продовження в компле-
ксну площину до цiлої функцiї першого порядку
i має розвинення в ряд Тейлора

h′(s) =

+∞∑
n=1

imζ(m+ 1)

(m− 1)!
sm−1

в околi точки s = 0 з нескiнченним радiусом
збiжностi.

Звiдси випливає, що й сама функцiя має ана-
лiтичне продовження до цiлої функцiї першого
порядку [15; 17], ряд Тейлора якої має вигляд

h(s) = h(0) +

+∞∑
n=1

imζ(m+ 1)

m!
sm,

де значення h(0) невiдоме.
У наступному твердженнi описано достатньо

широкий клас функцiй типу h(t).
Теорема 3. Якщо для функцiї f ∈ B2 показни-
ки λn функцiї монотонно прямують до нуля й
мають за великих n степеневу асимптотику

λn = Ln−α(1 + εn), (13)

де α > 0, L вiдмiнна вiд нуля дiйсна констан-
та, εn → 0 за n → +∞, то функцiя f має ана-
лiтичне продовження до цiлої функцiї першого
порядку.
Доведення. Для функцiї f ∈ B2 з показниками
λn, що задовольняють асимптотицi (13), за

m >
1

2α
(14)

ряди Фур’є, що вiдповiдають похiдним

f (m)(x) = im
+∞∑
n=1

anλ
m
n e−iλnx

є абсолютно збiжними, оскiльки з нерiвностi
Кошi-Буняковського будемо мати∣∣∣∣∣im

+∞∑
n=1

anλ
m
n e−iλnx

∣∣∣∣∣ ≤
≤

(
+∞∑
n=1

λ2m
n

) 1
2

·

(
+∞∑
n=1

|an|2
) 1

2

≤

≤ CLm

(
+∞∑
n=1

1

n2αm

) 1
2

· ∥f∥B2 =

= CLm (ζ(2αm))
1
2 · ∥f∥B2 ,
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де C > 0 — деяка константа. Отже, функцiя
f(x) нескiнченно диференцiйовна й за m > 1

2α її
похiднi f (m)(x) рiвномiрно обмеженi геометри-
чною прогресiєю вiдносно m:

∣∣f (m)
∣∣ < C1L

m.
Звiдси випливає, що f (m0)(x) (m0 — найменше
значення m, для якого виконується (14)) має
аналiтичне продовження до цiлої функцiї пер-
шого порядку [15; 17]. У такому разi сама фун-
кцiя f(x) також буде цiлою функцiєю першого
порядку. Теорему доведено.

Якщо показники λn функцiї f ∈ B2 монотон-
но прямують до нуля повiльнiше n−α для усiх
α > 0, тобто 0 < λn < Cn−α, де C > 0 зале-
жить вiд α, то ряди Фур’є для f(t) й для усiх
її похiдних можуть розбiгатися. Таке має мiсце,
наприклад, за λn = 1

lnn , n ≥ 2, для функцiї

f(t) =

+∞∑
n=2

e
it

lnn

√
n lnn

.

Цей ряд Фур’є та ряди Фур’є усiх похiдних

f (m)(t) = im
+∞∑
n=2

e
it

lnn

√
n(lnn)m+1

розбiжнi.
Наостанок наведемо приклади майже перiо-

дичних функцiй двох змiнних, якi подiбнi роз-

глянутiй перед теоремою 3 цiлiй функцiї h(s) i
дзета-функцiї Рiмана ζ(s):

µ(s1, s2) =

+∞∑
n=1

e
s1
n

ns2
, (15)

µ̃(s1, s2) =

+∞∑
n=1

(−1)n
e

s1
n

ns2
. (16)

Ряди (15) i (16) збiгаються абсолютно за
Re s1 ≥ 0 i Re s2 > 1, причому µ(0, s2) = ζ(s2),
µ̃(0, s2) = ζ̃(s2), µ(s1, 1) = h(s1).

За Re s1 ≥ 0 i 0 < Re s2 ≤ 1 ряд (16) збi-
гається умовно. Оскiльки (s− 1)ζ(s), ζ̃(s) i h(s)
цiлi функцiї, то (s− 1)µ(s1, s2) i µ̃(s1, s2) — цiлi
функцiї двох змiнних. Цi функцiї задовольня-
ють диференцiальному рiвнянню з частинною
похiдною за змiнною s1 та зсувом за аргумен-
том s2:

∂u(s1, s2)

∂s1
= u(s1, s2 + 1).

Автори висловлюють щиру подяку члену-
кореспонденту НАН України А.Н. Кочубею за
кориснi зауваження i поради.
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O. Kashpirovskyi, Yu. Mytnyk

ON SOME PROPERTIES OF ALMOST PERIODIC
FUNCTIONS

This paper explores conditions for exponents λn and coefficients of Fourier series which, if satisfied,
guarantee that the almost periodic function f(t) from Besikovich space B2 is continuous, smooth and
holomorphic.

For those exponents λn with polynomial asymptotics, λn = L(nα + εn), where L ∈ R1, α >
> 0, εn → 0 as n → +∞ the alternative for Sobolev embedding theorem is derived.

The paper also describes class of functions that can be analytically continued to half-plane Re s >
> a ≥ 0 from Besikovich space B2 with exponents λn which grow slower than nc for arbitrary c > 0 as
n → +∞. This class also includes Riemann zeta function ζ(s).

For functions from B2 with λn → 0 as n → +∞ sufficient conditions required to analytically
continued them to entire functions of exponential first order.

Keywords: almost periodicity, Bohr, Besikovich space, Riemann zeta function, Fourier series,
Dirichle series, holomorphness.
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