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СПЕКТРАЛЬНI ВIДНОВЛЮВАЛЬНI ЧИСЛА ГРАФIВ
C3 + e ТА K4 − e

У статтi дослiджено обернену спектральну задачу для зважених графiв. Розглянуто про-
блему вiдновлення додатних ваг ребер графа за спектрами його iндукованих пiдграфiв. Основну
увагу придiлено знаходженню точного значення спектрального вiдновлювального числа Srn(G)
для графiв Srn(C3 + e) та Srn(K4 − e) — мiнiмальної кiлькостi спектрiв iндукованих пiдграфiв,
необхiдних для однозначного вiдновлення всiх ваг ребер графа.

Отриманi результати завершують визначення спектральних вiдновлювальних чисел для всiх
зв’язних графiв порядку не бiльш як чотири. Вони можуть бути використанi для подальших
дослiджень обернених спектральних задач та розробки алгоритмiв вiдновлення ваг на ребрах
графiв.

Ключовi слова: спектр графа, власнi числа, оберненi спектральнi задачi, зважений граф.

Вступ

Спектральна теорiя графiв є сучасним на-
прямом математики, що поєднує алгебраїчнi,
комбiнаторнi та геометричнi методи для вивче-
ння структурних властивостей графiв (див. [1]).
Її активний розвиток зумовлений широким ко-
лом застосувань у рiзних галузях науки — вiд
хiмiї, фiзики та бiологiї до iнформатики, еко-
номiки й соцiальних наук (див. [2]–[4]). Спе-
ктральнi характеристики графiв використову-
ються, зокрема, у задачах розпiзнавання стру-
ктур, кластеризацiї даних, аналiзу мережевої
динамiки та моделювання складних систем, у
машинному навчаннi для покращення роботи
згорткових нейронних мереж (див. [3]).

Важливою складовою спектральної теорiї є
оберненi спектральнi задачi, якi передбачають
вiдновлення структури або параметрiв графа на
основi спектральної iнформацiї. Зокрема, цi за-
дачi можна формулювати як вiдновлення ма-
трицi сумiжностi (або ваг ребер) за спектрами
самої матрицi чи її пiдматриць (див. [5]–[8]). З
оглядом обернених спектральних задач можна
ознайомитися за роботою [7].

Особливий iнтерес становлять оберненi зада-
чi для зважених графiв, де на множинi ребер
задано додатну функцiю ваг. У статтi [10] було
вперше введено поняття спектрального вiднов-
лювального числа графа Srn(G), а також отри-
мано точнi значення цього числа для деяких
класiв графiв, зокрема для ланцюга (Srn(An) =
= 2 при n ≥ 3) та зiрки (Srn(K1,n) = n). У
роботi [11] знайдено значення цього числа для
циклiв C3 (Srn(C3) = 3) та C4 (Srn(C4) = 4), у
в статтi [12] — для графа K4 (Srn(K4) = 6).

Дослiдження [13], [14] надали верхнi оцiн-

ки Srn(G) для дерев та унiциклiчних графiв
через кiлькiсть висячих вершин. Проте навiть
для графiв невеликого порядку точне визначе-
ння Srn(G) залишається складною задачею че-
рез її нелiнiйний характер i високу чутливiсть
цього параметра до структури графа.

Метою цiєї роботи є знаходження точних
значень спектрального вiдновлювального числа
для графiв C3+e (paw graph) та K4−e (diamond
graph). Використанi методи ґрунтуються на уза-
гальненiй теоремi Захса та аналiзi характери-
стичних многочленiв iндукованих пiдграфiв.

Отриманi результати можуть стати основою
для подальших дослiджень, спрямованих на ви-
значення Srn(G) для ширших класiв графiв.

Основнi означення та твердження

У цiй статтi пiд термiном граф розумiємо
впорядковану пару G = (V,E), де V — непо-
рожня множина вершин, а E — довiльна пiд-
множина множини всiх невпорядкованих пар рi-
зних елементiв з V .

Надалi використовуємо такi позначення:
E(G) — множина ребер графа G, V (G) — мно-
жина його вершин, (u, v) — ребро, що сполучає
вершини u i v. Кiлькiсть вершин графа нази-
вають його порядком. У цiй роботi розглядаємо
лише графи скiнченного порядку.
Означення 1. Зваженим графом G назива-
ють впорядковану пару (G,w), де G — граф, а
w : E → (0,+∞) — вагова функцiя, яка кожно-
му ребру e ∈ E ставить у вiдповiднiсть додатне
число w(e).

Зважений граф G зручно зображати у ви-
глядi дiаграми графа G, приписуючи над ко-
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жним ребром e його вагу w(e). У подальшому
слово «зважений» часто опускатимемо, якщо з
контексту зрозумiло, що йдеться саме про зва-
жений граф.

З кожним графом G = (G,w) та нумерацiєю
його вершин натуральними числами вiд 1 до n,
де n — порядок графа, пов’язують матрицю
сумiжностi A(G) = (aij)

n
i,j=1, елементи якої

визначаються за правилом (через wij позначає-
ться значення ваги ребра (i, j)):

aij =

{
wij , якщо вершини i та j сумiжнi,
0, iнакше.

Означення 2. Спектром графа G називають
мультимножину власних значень його матрицi
сумiжностi. Позначають як σ(G).

Зауважимо, що спектр зваженого графа не
залежить вiд нумерацiї вершин i є його iнварi-
антом.

Для характеристичного многочлена графа
G будемо використовувати позначення

PG(λ) = det(λI −A(G)).

Для формулювання узагальненої теореми
Захса введемо необхiднi означення та позначен-
ня (див. [9], [13]).

Лiнiйним пiдграфом графа G називають пiд-
граф, компоненти зв’язностi якого є лише па-
ри сумiжних вершин (разом iз ребром, що їх
з’єднує) та простi цикли. Позначимо його через
Hk, де k — кiлькiсть вершин у цьому пiдграфi.

Пiд вагою компоненти зв’язностi, що є па-
рою сумiжних вершин {i, j}, розумiємо w2

ij , а
пiд вагою компоненти, що є простим циклом, —
добуток значень wij по всiх ребрах циклу (i, j).

Введемо позначення: r(Hk) — кiлькiсть ком-
понент зв’язностi лiнiйного пiдграфа Hk; c(Hk)
— кiлькiсть компонент, що є циклами; w(Hk) —
вага Hk, тобто добуток ваг усiх його компонент.

Теорема 1 (Узагальнена теорема Захса, див.
теорему 2.5.2. в [13]). Нехай

PG(λ) =

n∑
k=0

ckλ
n−k = λn+c1λ

n−1+c2λ
n−2+· · ·+cn

— характеристичний многочлен графа
G = (G,w). Тодi виконуються рiвностi:
1. c1 = 0;
2. c2 = −

∑
e∈E(G)

w(e)
2;

3. ck =
∑
{Hk}

(−1)r(Hk)2c(Hk)w(Hk), для k =

= 1, . . . , n,
де сума береться по всiх лiнiйних пiдгра-
фах Hk графа G.

Нагадаємо, що iндукований пiдграф графа G
— це пiдграф, утворений пiдмножиною вершин
графа G разом з усiма ребрами, що сполучають
цi вершини.
Означення 3. Зважений граф G1 = (G1, w1)
називають iндукованим пiдграфом зваженого
графа G = (G,w), якщо G1 є iндукованим пiд-
графом G, i для будь-якого ребра e ∈ E(G1)
виконується рiвнiсть w1(e) = w(e).

Розглянемо таку обернену спектральну за-
дачу для зважених графiв. Нехай задано граф
G i потрiбно однозначно вiдновити вагову фун-
кцiю w зваженого графа G = (G,w) за спе-
ктрами певних його iндукованих пiдграфiв. Iна-
кше кажучи, необхiдно, щоб за значеннями спе-
ктрiв вибраних пiдграфiв ваги на ребрах графа
G визначалися однозначно для будь-якої вагової
функцiї w. Спектр iндукованого пiдграфа нази-
ватимемо пiдспектром.

Зауважимо, що задача вiдновлення ваг за
спектрами пiдграфiв еквiвалентна задачi вiд-
новлення за характеристичними многочленами
цих пiдграфiв, оскiльки за спектром зваженого
графа однозначно вiдновлюється його характе-
ристичний многочлен i навпаки.
Означення 4. Спектральне вiдновлювальне
число Srn(G) — це мiнiмальна кiлькiсть iндуко-
ваних пiдграфiв G, таких, що за спектрами вiд-
повiдних зважених iндукованих пiдграфiв мо-
жна однозначно вiдновити вагову функцiю зва-
женого графа G.

Обернена спектральна задача для графа
C3 + e

Дослiдимо задачу вiдновлення ваг для гра-
фа C3 + e та доведемо таку теорему.

Теорема 2. Srn(C3 + e) = 3.

Доведення. Для зручностi як множину вершин
оберемо множину {1, 2, 3, 4} та позначимо ва-
ги на ребрах графа через a1, a2, a3, a4 згiдно з
рис.1.

Рис. 1. Зважений граф C3 + e

Спочатку вкажемо трiйку iндукованих пiд-
графiв, за спектрами яких можна однозначно
визначити всi ваги ребер графа C3+e для будь-
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якої вагової функцiї w:

C3 + e,A3,A2.

Через A3 позначено iндукований пiдграф iз
множиною вершин {1, 2, 3}, а через A2 — iнду-
кований пiдграф iз множиною вершин {1, 2}.

За узагальненою теоремою Захса (Теорема
1) характеристичнi многочлени графа C + e та
його вибраних iндукованих пiдграфiв мають та-
кий вигляд:
PA2

(λ) = λ2 − a21;
PA3

(λ) = λ3 − (a22 + a24)λ;
PC3+e(λ) = λ4−(a21+a22+a23+a24)λ

2−2a1a2a3λ+
+ a21a

2
4.

Тодi ми можемо послiдовно вiдновити значе-
ння усiх ваг a1, a2, a3, a4 за значеннями коефiцi-
єнтiв цих характеристичних полiномiв. Споча-
тку знайдемо значення ваги a1 за коефiцiєнтом
−a21, потiм за коефiцiєнтом a21a

2
4 знайдемо вагу

a4, далi за коефiцiєнтом −(a22+a24) знайдемо ва-
гу a2 та потiм за коефiцiєнтом −(a21+a22+a23+a24)
знайдемо вагу a3.

Таким чином, усi ваги графа C3 + e можуть
бути однозначно визначенi за трьома пiдспе-
ктрами, отже, доведено таку нерiвнiсть:

Srn(C3 + e) ≤ 3.

Перейдемо до другої частини доведення Те-
ореми 2.

Розглянемо всi типи наборiв, що складаю-
ться з двох рiзних iндукованих пiдграфiв C3+e,
з точнiстю до iзоморфiзму графiв, та для ко-
жного такого набору пiдграфiв покажемо, що їх
спектрiв недостатньо для однозначного вiднов-
лення вагової функцiї w зваженого графа C3+e.

Через C3 позначається цикл довжини 3, а
через Ak — ланцюг довжини k − 1. Число, яке
стоїть перед позначенням графа, вказує на кiль-
кiсть таких графiв у наборi.

Маємо такi 8 типiв наборiв:
1. C3 + e;
2. C3 + e, A3;
3. C3 + e, A2;
4. C3, A3;
5. C3, A2;
6. 2A3;
7. A3, A2;
8. 2A2.

Проаналiзуємо кожен тип набору та наведе-
мо приклади двох рiзних вагових функцiй для
графа C3+e, для яких є рiвними характеристи-
чнi полiноми вiдповiдних вибраних iндукованих

пiдграфiв. Таким чином, ми доведемо, що двох
пiдспектрiв недостатньо для однозначного вiд-
новлення ваг графа C3+e. Очевидно, що з цьо-
го випливатиме, що i одного пiдспектра також
недостатньо.

1. C3+e, C3. Для набору пiдграфiв першо-
го типу наведемо приклад двох рiзних наборiв
ваг:

• a1 = a, a2 = b, a3 = c, a4 = d,
• a1 = a, a2 = c, a3 = b, a4 = d,
a, b, c, d — довiльнi додатнi числа такi, що
b ̸= c.
Характеристичнi полiноми графiв C3+e, C3

для цих двох наборiв ваг будуть рiвними вiд-
повiдно, оскiльки цi графи переходять один в
одного при перестановцi вершин 1 та 2, а як вi-
домо, спектр графа є його iнварiантом i не за-
лежить вiд нумерацiї його вершин.

2. C3 + e, A3. Без обмеження загальностi
можемо розглянути варiант вибору ланцюга A1

3

з множиною вершин {1, 3, 4}, оскiльки iнший ви-
падок розглядається аналогiчно.

Розглянемо такi два рiзнi набори ваг:
• a1 = 2, a2 =

√
2
√
3 + 3, a3 =

√
2
√
3− 3,

a4 = 1,
• a1 = 1, a2 = a3 = 4

√
12, a4 = 2.

Характеристичнi полiноми графiв C3+e, A3

для цих двох наборiв ваг будуть рiвними вiдпо-
вiдно, оскiльки значення виразiв a21+a22+a23+a24,
a1a2a3, a21a24 та a22+a24 для вказаних двох наборiв
ваг є рiвними вiдповiдно.

3. C3+e, A2. Iснують два принципово рiзнi
варiанти вибору ланцюга A2.

1. Ланцюг A2 з множиною вершин {1, 2} або
{3, 4}. У цьому випадку розглянемо той самий
приклад з двома рiзними наборами ваг, що i для
першого типу набору iндукованих пiдграфiв.

2. Ланцюг A2 з множиною вершин {1, 3} або
{2, 3}. Оскiльки цi випадки аналогiчнi, то ро-
глянемо перший з них. Наведемо приклад двох
рiзних наборiв ваг:

• a1 = a2 = a3 = a4 = 1,

• a1 =
√
2, a2 = 1, a3 = a4 =

√
2

2
,

a, b, c — довiльнi додатнi числа такi, що a ̸= b.
Для цих двох наборiв ваг характеристичнi

полiноми графiв C3+e, A2 будуть рiвними вiд-
повiдно.

4. C3, A3. Без обмеження загальностi мо-
жемо розглянути варiант вибору ланцюга A1

3 з
множиною вершин {1, 3, 4}, оскiльки iнший ви-
падок розглядається аналогiчно.

Розглянемо такi два рiзнi набори ваг:
• a1 = a, a2 = b, a3 = c, a4 = d,



22 e-ISSN 2663-0648. Могилянський математичний журнал. 2025. Том 8

• a1 = c, a2 = b, a3 = a, a4 = d,

a, b, c, d — довiльнi додатнi числа такi, що

a ̸= c.

Характеристичнi полiноми графiв C3, A3

для цих двох наборiв ваг будуть рiвними вiдпо-
вiдно, оскiльки зваженi графи C3 для першого
та другого набору ваг переходять один в одно-
го при перестановцi вершин 1 та 3, а графи A3

мають одну й ту саму вагову функцiю.

5. C3, A2. Очевидно, що у разi вибору в ро-
лi графа A2 ланцюга з множиною вершин {1, 2},
{1, 3} або {2, 3}, вага ребра {3, 4} буде невизна-
ченою.

Якщо ж як A2 обрано ланцюг з множиною
вершин {3, 4}, то можемо розглянути той самий
приклад з двома рiзними наборами ваг, що i для
першого типу набору iндукованих пiдграфiв.

Отже, однозначне вiдновлення усiх ваг гра-
фа C3 + e за пiдспектрами такого типу набору
двох iндукованих пiдграфiв неможливе.

6. 2A3; 7. A3, A2; 8. 2A2. Для усiх та-
ких типiв наборiв очевидно, що вагу принаймнi
одного ребра графа C3 + e неможливо визначи-
ти.

Розглянуто та проаналiзовано всi можливi
типи наборiв, що складаються з двох рiзних
iндукованих пiдграфiв C3 + e. Показано, що
за спектрами жодного з таких наборiв пiдгра-
фiв неможливо однозначно вiдновити ваги всiх
ребер графа C3 + e. Отже, Srn(C3 + e) > 2.
Оскiльки водночас доведено, що Srn(C3 + e) ≤
≤ 3, маємо Srn(C3 + e) = 3. Таким чином,
Теорему 2 доведено.

Обернена спектральна задача для графа
K4 − e

Також дослiдимо задачу вiдновлення ваг для
графа K4 − e та доведемо теорему про спе-
ктральне вiдновлювальне число графа K4 − e.

Теорема 3. Srn(K4 − e) = 4.

Доведення. Як множину вершин для зручностi
оберемо множину {1, 2, 3, 4} та позначимо ва-
ги на його ребрах через a1, a2, a3, a4, a5 згiдно
з рис. 2.

Рис. 2. Зважений граф K4 − e

Спочатку доведемо, що Srn(K4 − e) ≤ 4.
Для цього достатньо вказати четвiрку iн-

дукованих пiдграфiв, за спектрами яких мо-
жна однозначно визначити всi ваги ребер графа
K4− e для будь-якої вагової функцiї w. Це така
четвiрка:

K4 − e,C1
3,A

1
3,A

1
2.

Позначення C1
3, A1

3 та A1
2 вiдповiдають iндуко-

ваним пiдграфам з множинами вершин {1, 2, 4},
{1, 2, 3} та {1, 2} вiдповiдно.

Знайдемо за узагальненою теоремою Захса
(Теорема 1) характеристичнi многочлени графа
K4−e та його вибраних iндукованих пiдграфiв:
PA1

2
(λ) = λ2 − a21;

PA1
3
(λ) = λ3 − (a21 + a22)λ;

PC1
3
(λ) = λ3 − (a21 + a24 + a25)λ− 2a1a4a5;

PK4−e(λ) = λ4 − (a21 + a22 + a23 + a24 + a25)λ
2 −

2(a1a4a5 + a2a3a5)λ+ a21a
2
3 + a22a

2
4 − 2a1a2a3a4.

Спочатку за PA1
2
(λ) вiдновлюємо значення

ваги a1. Потiм за PA1
3
(λ) знаходимо вагу a2.

Далi за значеннями коефiцiєнтiв −(a21+a24+a25)
та −(a21 + a22 + a23 + a24 + a25) полiномiв PC1

3
(λ) та

PK4−e(λ) визначаємо вагу a3. За коефiцiєнтами
−2a1a4a5 та −2(a1a4a5 + a2a3a5) цих полiномiв
та значеннями a2, a3 знаходимо значення ваги
a5. Насамкiнець за коефiцiєнтом −2a1a4a5 та
значеннями a1, a5 визначаємо вагу a4.

Таким чином, усi ваги графа K4 − e можуть
бути однозначно вiдновленi за чотирма пiдспе-
ктрами, тому доведено нерiвнiсть

Srn(K4 − e) ≤ 4.

Перейдемо до доведення неможливостi одно-
значного вiдновлення ваг графа K4 − e за трьо-
ма пiдспектрами. З цього випливатиме, що й
меншої кiлькостi пiдспектрiв також недоста-
тньо.

Розглянемо всi можливi типи наборiв, якi
складаються з трьох рiзних iндукованих пiдгра-
фiв K4 − e, з точнiстю до iзоморфiзму графiв.

Маємо 14 типiв таких наборiв:
1. K4 − e, 2C3;
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2. K4 − e, C3, A3;
3. K4 − e, 2A3;
4. K4 − e, C3, A2;
5. K4 − e, A3, A2;
6. K4 − e, 2A2;
7. 2C3, A3;
8. 2C3, A2;
9. C3, 2A3;

10. C3, 2A2;
11. C3, A3, A2;
12. 2A3, A2;
13. A3, 2A2;
14. 3A2.

Розглянемо усi типи наборiв та наведемо
приклади двох рiзних вагових функцiй для гра-
фа K4−e, для яких вiдповiдно рiвнi характери-
стичнi полiноми вибраних iндукованих пiдгра-
фiв, а отже i вiдповiднi спектри рiвнi.

1. Проаналiзуємо спочатку набори з трьох
iндукованих пiдграфiв першого, другого, тре-
тього, сьомого, дев’ятого та дванадцятого типiв.

Оскiльки iншi випадки повнiстю аналогiчнi,
то без обмеження загальностi можна вважати,
що у другому типi набору обрано iндукованi пiд-
графи C1

3 та A1
3 з множинами вершин {1, 2, 4}

та {1, 2, 3} вiдповiдно. Також для сьомого та
дев’ятого типiв набору будемо вважати, що як
пiдграфи A3 та C3 обрано A1

3 та C1
3 вiдповiдно.

Для дванадцятого типу набору можна вва-
жати, що як пiдграф A обрано iндукований пiд-
граф A5

2 з множиною вершин {2, 4}, оскiльки в
iншому випадку вага a5 залишиться невизначе-
ною.

Наведемо приклад двох рiзних наборiв ваг:
• a1 = a2 = a, a3 = a4 = b, a5 = c,
• a1 = a2 = b, a3 = a4 = a, a5 = c,

a, b, c — довiльнi додатнi числа такi, що a ̸= b.
Нескладно переконатися, що характеристи-

чнi полiноми зважених графiв K4 − e рiвнi для
наведених двох наборiв ваг полiному

PK4−e(λ) = λ4 − (2a2 + 2b2 + c2)λ2 − 4abcλ+
+ a4 + b4 − 2a2b2.

Характеристичнi полiноми двох iндукованих
пiдграфiв, що є циклами довжини 3, також рiвнi
мiж собою для обох наборiв ваг та рiвнi такому
полiному:

PC3
(λ) = λ3 − (a2 + b2 + c2)λ2 − 2abc.

Також рiвнi мiж собою характеристичнi по-
лiноми двох iндукованих пiдграфiв, що є лан-
цюгами довжини 2, для обох наборiв ваг, вони
рiвнi такому полiному:

PA3(λ) = λ3 − (a2 + b2)λ.
Отже, вiдновити ваги графа K4 − e за спе-

ктрами вибраних вище наборiв iндукованих пiд-

графiв неможливо. Для iнших типiв наборiв бу-
демо лише вказувати потрiбнi приклади двох рi-
зних вагових функцiй, обґрунтування неможли-
востi однозначного вiдновлення ваг аналогiчнi
до наведеного вище.

2. Дослiдимо набiр четвертий типу:
K4 − e, C3, A2.
Без обмеження загальностi можна вважати,

що обрано iндукований пiдграф C1
3 з множиною

вершин {1, 2, 4}.
Iснують два принципово рiзнi варiанти вибо-

ру ланцюга A2.
1. Ланцюг A2, що є пiдграфом C1

3. У цьому
випадку наведемо такий приклад двох рiзних
наборiв ваг:

• a1 = a3 = a4 = a, a2 = b, a5 = c,
• a1 = a2 = a4 = a, a3 = b, a5 = c,
де a, b, c — довiльнi додатнi числа такi, що

a ̸= b.
2. Ланцюг A2, що не є пiдграфом C1

3. У цьо-
му випадку розглянемо такi два рiзнi набори
ваг:

• a1 = a2 = a3 = a, a4 = b, a5 = c,
• a2 = a3 = a4 = a, a1 = b, a5 = c,
a, b, c — довiльнi додатнi числа такi, що a ̸= b.

5. Проаналiзуємо набiр п’ятого типу:
K4 − e, A3, A2.
Без обмеження загальностi можна вважати,

що обрано iндукований пiдграф A1
3 з множиною

вершин {1, 2, 3}.
Iснує два принципово рiзнi варiанти щодо ви-

бору ланцюга A2.

1. Ланцюг A2, що мiстить вершину 2. Для
цього варiанта розглянемо такi два рiзнi набори
ваг:

• a1 = a2 = a3 = a, a4 = b, a5 = c,
• a1 = a2 = a4 = a, a3 = b, a5 = c,
a, b, c — довiльнi додатнi числа такi, що a ̸= b.

2. Ланцюг A2, що не мiстить вершину 2. То-
дi наведемо такий приклад двох рiзних наборiв
ваг:

• a1 = a3 = a4 = a, a2 = b, a5 = c,
• a2 = a3 = a4 = a, a1 = b, a5 = c,
a, b, c — довiльнi додатнi числа такi, що a ̸= b.

4. Проаналiзуємо набiр шостого типу:
K4 − e, 2A2.

Розглянемо всi можливi варiанти вибору
двох пiдграфiв A2.

1. Якщо обрано пiдграф A5
2 з множиною вер-

шин {2, 4} та пiдграф, що мiстить вершину 2 або
вершину 4. Оскiльки цi випадки аналогiчнi, то
без обмежень загальностi, розглянемо випадок
вибору A1

2 з множиною вершин {1, 2}.
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Для цього варiанта наведемо приклад двох
рiзнi наборiв ваг:

• a1 = a2 = a4 = a5 = a, a3 = b,
• a1 = a3 = a4 = a5 = a, a2 = b,
a, b — довiльнi додатнi числа такi, що
a ̸= b.
2. Якщо обрано два пiдграфи A, що мають

спiльну вершину, окрiм тих випадкiв, якi роз-
глянути у першому варiантi. Достатньо розгля-
нути два випадки: обранi пiдграфи A з множи-
нами вершин {1, 2} та {1, 4} або {1, 2} та {2, 3}.
Iншi випадки аналогiчнi.

Для цих випадкiв розглянемо такi два рiзнi
набори ваг:

• a1 = a2 = a4 = a5 = a, a3 = b,
• a1 = a2 = a3 = a5 = a, a4 = b,
a, b — довiльнi додатнi числа такi, що
a ̸= b.

3. Якщо обрано два пiдграфи A, що не
мають спiльної вершини. Достатньо розгляну-
ти один випадок, оскiльки iнший аналогiчний:
обранi пiдграфи A з множинами вершин {1, 2}
та {3, 4}.

Наведемо приклад двох рiзних наборiв ваг:
• a1 = a3 = a, a2 = b, a4 = d, a5 = c, a5 = e,
• a1 = a3 = a, a2 = d, a4 = b, a5 = c, a5 = c,
a, b, c, d — довiльнi додатнi числа такi, що
b ̸= d.

5. Аналiз набору 2C3, A2 восьмого типу
проводиться аналогiчно до аналiзу набору че-
твертого типу: варто розглянути такi самi варi-
анти вибору ланцюга A2 та набори ваг.

6. Проаналiзуємо набiр одинадцятого типу:
C3, A3, A2.
Без обмеження загальностi можна вважати,

що обрано пiдграфи C1
3 та A1

3 з множинами вер-
шин {1, 2, 4} та {1, 2, 3} вiдповiдно. Також мо-
жна вважати, що як пiдграф A2 обрано A3

2 з
множиною вершин {3, 4}, оскiльки в iншому ви-
падку неможливо вiдновити значення ваги a3.

Наведемо приклад двох рiзних наборiв ваг:
• a1 = a, a2 = b, a3 = c, a4 = d, a5 = e,
• a1 = a, a2 = b, a3 = e, a4 = d, a5 = c,

a, b, c, d, e — довiльнi додатнi числа такi, що
d ̸= e.

7. Для наборiв останнiх двох типiв —
A3, 2A2 або 3A2 — очевидно, що вагу принайм-
нi одного ребра графа K4− e неможливо визна-
чити.

Розглянуто всi можливi типи наборiв, що
складаються з трьох рiзних iндукованих пiдгра-
фiв графа K4 − e. Для наборiв кожного типу
наведено приклади двох рiзних вагових фун-
кцiй, за яких вiдповiднi зваженi пiдграфи ма-
ють однаковi характеристичнi полiноми, а отже,
й однаковi спектри. Це доводить, що за трьома
пiдспектрами неможливо однозначно вiдновити
ваги всiх ребер графа K4 − e.

Отже, Srn(K4 − e) > 3.
Водночас показано, що чотирьох пiдспектрiв

достатньо для повного вiдновлення всiх ваг ре-
бер, тобто Srn(K4 − e) ≤ 3.

Таким чином, маємо Srn(K4 − e) = 4.
Теорему 3 доведено.

Висновки

У цiй роботi дослiджено обернену спектраль-
ну задачу для зважених графiв та визначено
точнi значення спектральних вiдновлювальних
чисел для графiв C3 + e та K4 − e.

Застосовуючи узагальнену теорему Захса,
побудовано характеристичнi многочлени вiдпо-
вiдних зважених графiв та їхнiх iндукованих
пiдграфiв. Показано, що за трьома або чотир-
ма пiдспектрами вiдповiдно можна однозначно
вiдновити всi ваги ребер, тодi як за меншої кiль-
костi пiдспектрiв вiдновлення є неоднозначним.

Отриманi результати завершують визначе-
ння спектральних вiдновлювальних чисел для
всiх зв’язних графiв порядку не бiльш як чо-
тири. Вони створюють основу для подальших
дослiджень обернених спектральних задач i мо-
жуть бути використанi пiд час розроблення ал-
горитмiв вiдновлення додатних ваг ребер у зва-
жених графах.
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L. Tymoshkevych, K. Cherniavska

SPECTRAL RECONSTRUCTION NUMBERS OF GRAPHS
C3 + e AND K4 − e

This paper investigates an inverse spectral problem for weighted graphs. The problem under consid-
eration concerns the reconstruction of edge weights from the spectra of induced subgraphs. We focus
on determining the spectral reconstruction number Srn(G), defined as the minimal number of spectra
of induced subgraphs required to uniquely recover all edge weights of a weighted graph G.

The main contribution of this work is the exact determination of the spectral reconstruction number
for the paw graph C3 + e and the diamond graph K4 − e.

The obtained results complete the determination of spectral reconstructive numbers for all connected
graphs of order at most four. They can be used for further research on inverse spectral problems and
for developing algorithms to reconstruct edge weights in graphs.

Keywords: spectra of graph, eigenvalues, inverse spectral problems, weighted graph, subgraphs of
graph.
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