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ITERATIVE DEMAND OPTIMIZATION USING THE
DISCRETE FUNCTIONAL PARTICLE METHOD

This article addresses the challenge of assortment planning in retail under uncertain demand and
operational constraints. It develops a hybrid methodology that integrates SARIMAX time-series fore-
casting with the Discrete Functional Particle Method (DFPM) for optimisation, enabling both strategic
(long-term) and tactical (monthly) decision support.

The proposed framework combines statistical forecasting with iterative optimisation in order to balance
predictive accuracy and operational feasibility. In the forecasting stage, a SARIMAX model with exoge-
nous regressors captures seasonality, promotions, and demand fluctuations, while a safeguard mechanism
prevents excessively pessimistic predictions. In the optimisation stage, DFPM is applied to a quadratic
objective under linear constraints, with parameters tuned using eigenvalue analysis of the risk matrix.
A novel operational risk metric—the Inventory Efficiency Ratio—is introduced, defined as the ratio of
leftover stock value to revenue, and used to construct the covariance structure for optimisation.

A hybrid strategy blends the mathematically optimal allocation with a baseline derived from historical
sales shares, ensuring both practical stability and data-driven improvements. Tactical adjustments refine
this strategic solution by incorporating seasonal indices and business constraints such as minimum and
maximum category weights.

The framework is implemented in Python and evaluated on real-world retail data from a Ukrainian
anti-stress toy retailer. Results demonstrate a 25% reduction in operational risk and a threefold increase
in inventory turnover, while maintaining realistic revenue forecasts.

Overall, the work contributes a flexible and reproducible decision-support methodology that unifies
modern forecasting and optimisation techniques, providing practitioners with a tool for improving as-
sortment decisions in dynamic retail environments.

Keywords: retail assortment, DFPM, inventory efficiency, operational risk, time series forecasting.

Introduction

Modern companies face immense pressure to
accelerate and refine decisions related to prod-
uct assortment due to rapid changes and grow-
ing competition in the retail landscape. The
volume, velocity, and volatility of business data
make intuitive or situational approaches insuffi-
cient. Advances in optimization theory and fore-
casting models enable the design of robust, flexible
decision-support systems that bridge the gap be-
tween business intuition and data-driven strategy.

In retail, risk manifests primarily through op-
erational inefficiencies — such as capital immobi-
lized in unsold inventory and delayed responsive-
ness to demand changes. This demands a rethink-
ing of risk modeling tailored specifically to the re-
tail domain. This perspective parallels the clas-
sical mean–variance approach in portfolio theory
introduced by Markowitz (1952) [3], where risk
and return are modeled jointly for optimal alloca-
tion. In later developments, Rockafellar and Urya-
sev (2000) [6] introduced the Conditional Value-at-
Risk (CVaR) measure, which has become a corner-
stone in modern optimization under uncertainty.

At the same time, simplistic forecasting tools
often prioritize short-term fluctuations at the ex-
pense of strategic seasonal trends, thereby under-
mining long-term planning. As a result, there is
a critical need for integrated models that combine
predictive accuracy with optimization under un-
certainty. Such models must not only capture pat-
terns in consumer demand but also align with op-
erational constraints to ensure that solutions are
implementable in practice.

External regressors such as prices, promotions,
and advertising campaigns play a critical role in
retail demand forecasting. Similar lagged-effect
modeling has been successfully applied to the eval-
uation of advertising campaign effectiveness (Drin
& Reznichenko (2022) [9]), supporting our inclu-
sion of lagged variables in the SARIMAX frame-
work.

This work proposes a novel, multi-layered
framework for assortment optimization that incor-
porates two key components: SARIMAX - based
demand forecasting and the Discrete Functional
Particle Method (DFPM) for iterative optimiza-
tion. Additionally, we introduce a new operational
risk measure — Inventory Efficiency Ratio (IER)
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— designed to quantify inefficiencies in the retail
pipeline.

By embedding these techniques into a unified
system, we offer a practical solution for improving
capital productivity, reducing inventory holding
costs, and enhancing responsiveness in assortment
planning. The methodology is validated through
real-world data and demonstrates substantial per-
formance improvements over standard planning
strategies.

Methodology for strategic assortment
optimization

The foundation of this study lies in creating a
multi-phase methodology for identifying the most
effective strategic distribution of resources among
various product categories. This method em-
ploys an advanced iterative optimization technique
known as the Discrete Functional Particle Method
(DFPM). However, it modifies and incorporates it
within a broader framework that guarantees both
the consistency and real-world applicability of the
outcomes. This section elaborates on the mathe-
matical formulation of the issue and the particular
execution of the solution approach.

Forecasting with SARIMAX

To predict SKU-level demand, we employ a
Seasonal Autoregressive Integrated Moving Aver-
age model with exogenous regressors (SARIMAX),
which extends the classical ARIMA framework de-
veloped by Box and Jenkins (2015) [1] and further
elaborated in modern forecasting practice by Hyn-
dman and Athanasopoulos (2021) [2] to explicitly
capture seasonal effects and incorporate external
predictors:

yt = µ+

p∑
i=1

ϕiyt−i +

q∑
j=1

θjϵt−j

+
∑
k

βkxk,t +

S∑
s=1

Φsyt−sT + ϵt,

where xk,t are external regressors (e.g., price, pro-
motions, holidays), T is the seasonal period, and
ϵt is white noise with zero mean and variance σ2.

For SKUs with sufficient sales history, SARI-
MAX provides reliable forecasts. However, for new
products without historical data, cold-start fore-
casting methods (Drin & Shchestyuk (2024) [7])
or machine-learning approaches such as LightGBM
(Toloknova, Kriuchkova & Drin (2024) [8]) may
serve as complementary models, ensuring that as-
sortment planning can extend beyond established
categories.

Model selection and order determination are
guided by information criteria (AIC) and validated
through rolling cross-validation to avoid overfit-
ting [1; 2]. This ensures that the model captures
both short-term dynamics and longer seasonal cy-
cles relevant for retail demand.

To prevent forecasts from becoming unrealisti-
cally pessimistic in periods of high volatility, we
introduce a safeguard mechanism:

ŷt = max(ŷt, τ · ȳ),

where ȳ is the historical mean demand, and τ ∈
∈ [0.2, 0.4] is an empirically tuned parameter. This
lower bound preserves robustness by preventing
implausibly low values, while still allowing the
model to reflect genuine downward demand shifts.
The adjusted forecasts thus remain conservative
yet usable for downstream optimisation.

Problem formulation for product
assortment optimization

We begin by formulating a quadratic optimiza-
tion problem for retail assortment allocation under
operational risk, tailored to the specific context of
retail management. We consider a category con-
sisting of k products. Let di = (d1i, . . . , dki)

T be
the k-dimensional vector of observed sales quanti-
ties for these products at time i = 1, . . . , N . We
assume the second moment of di is finite.

Let w = (w1, . . . , wk)
T be the vector of weights

for each product in the category, where wj denotes
the share of jth product. We define 1 ∈ Rk as the
vector of ones.

A key distinction of our approach is how we de-
fine "risk" and "return." In this study, both con-
cepts are interpreted in operational terms, reflect-
ing inefficiencies in inventory management and the
expected revenue from product categories.

• Return Vector µ: The vector µ ∈ Rk rep-
resents the expected return for each category,
which we define as the historical average rev-
enue.

• Risk Matrix R: The matrix R ∈ Rk×k rep-
resents the operational risk. It is defined as
the covariance matrix of the Inventory Effi-
ciency Ratio (Ei(t)). This ratio, calculated
for each category i at each time period t, is
given by:

Ei(t) =
Value of Leftoversi(t)

Revenuei(t)
. (1)

A high value indicates operational ineffi-
ciency. Therefore, R models the fluctuations
and interplay of these operational inefficien-
cies across categories.
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Risk operator R: covariance vs.
penalty. In this work, we examined two
alternative formulations of the risk matrix:
Covariance-based form: R = Cov(IER).
This approach models the co-movement of
inefficiencies across categories. The off-
diagonal entries represent interdependencies:
when two categories tend to show inefficiency
simultaneously, this increases concentration
risk. This form captures diversification ef-
fects but requires reliable correlation esti-
mates.
Diagonal penalty form: R = diag(IER).
Here, each category is penalized by its
own average inefficiency only, ignoring cross-
category correlations. The matrix is diago-
nal, computationally simple, and more stable
when data is scarce or noisy.
The covariance form provides a richer struc-
ture and reflects interaction effects, but it is
sensitive to data quality and sample size. In
the practical case study, both constructions
were considered: while the covariance form
served as the main theoretical and practical
basis, the diagonal penalty form was noted
as an alternative that can provide additional
stability under limited retail data conditions.

Optimization with DFPM

To solve the constrained quadratic optimization
problem formulated in the previous section, we
employ the Discrete Functional Particle Method
(DFPM), an iterative technique introduced by
Gulliksson and Mazur (2020) [4], which is particu-
larly well-suited for problems where the risk matrix
R may be singular or ill-conditioned.

The core idea of DFPM is to find the minimum
of a convex function V (u) by treating it as a po-
tential field for a physical system. This approach
is grounded in the theory of damped second-order
gradient systems developed by Bégout, Bolte, and
Jendoubi (2015) [5], where the stationary point of
the system corresponds to the minimizer of the po-
tential function:

ü(t) + η u̇(t) = −∇V
(
u(t)

)
, η > 0, (2)

where u̇ and ü are the first and second time deriva-
tives of the position vector u, and η is a damping
coefficient.

Application to the Constrained Problem

Our main optimization problem is constrained:

min
w∈Rk

1
2 w

T Rw s.t. Bw = c, (3)

where R is the operational risk matrix. The fac-
tor 1

2 is introduced as a standard convention in
quadratic optimisation: it does not affect the min-
imiser but simplifies the gradient expression, since
∇w

1
2w

TRw = Rw instead of 2Rw. The constraints
are given by:

B =

(
1⊤

µ⊤

)
∈ R2×k, c =

(
1

µtarget

)
∈ R2 (4)

Here, the first row of B corresponds to the con-
dition

w⊤1 = 1,

which enforces that the weights across all prod-
uct categories sum to one, i.e. the entire assort-
ment share is fully allocated. The second row cor-
responds to

w⊤µ = µtarget,

which ensures that the expected total revenue (cal-
culated as the weighted average of historical cat-
egory revenues µ) reaches a predetermined target
level µtarget. Thus, the constraint system (Bw =
= c) simultaneously guarantees both normaliza-
tion of the assortment shares and achievement of
the revenue target.

To apply DFPM, we first eliminate the linear
constraints by parameterizing the solution vector
w. Any feasible w that satisfies Bw = c can be
written as:

w = Z u + g, u ∈ R k−2, (5)

where:
• g = BT (BBT )−1c is a particular solution to

the constraint system.
• Z ∈ Rk×(k−2) is a matrix whose columns

form an orthonormal basis for the null space
(kernel) of B, meaning BZ = 0.

• u is a new vector of variables in a lower-
dimensional, unconstrained space.

Note that the dimension of the reduced vec-
tor u is k − 2. This follows from the fact that
the constraint matrix B ∈ R2×k has rank 2 (the
two constraints — normalization of weights and the
revenue target — are linearly independent). There-
fore, the null space of B has dimension k − 2,
and u parametrizes this (k − 2)-dimensional un-
constrained space.

Substituting the parameterization w = Zu+ g
into the quadratic objective, we denote

Φ(u) = 1
2 (Zu+ g)TR(Zu+ g). (6)

Expanding the product yields

Φ(u) = 1
2

(
uTZTRZu+ 2gTRZu+ gTRg

)
. (7)
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The last term 1
2g

TRg is constant with respect to
u and therefore does not affect the minimization.
Dropping this constant, the problem simplifies to

min
u∈Rk−2

1
2 u

T(ZTRZ)u + (ZTRg)Tu. (8)

Defining

M = ZTRZ, d = ZTRg,

we obtain the equivalent unconstrained problem of
minimizing the potential

V (u) = 1
2 u

TM u + dT u. (9)

From equation (9) we compute the gradient of
the potential. The derivative of the quadratic term
1
2u

TMu gives Mu, while the derivative of the lin-
ear term dTu gives d, so that

∇V (u) = Mu+ d.

Substituting this result into the damped dy-
namical system yields

ü(t) + η u̇(t) = −(M u(t) + d). (10)

To solve this numerically, we introduce the veloc-
ity v(t) = u̇(t) and apply the iterative symplectic
Euler scheme with a time step ∆t:

vk+1 = (1−∆t η)vk −∆t(Muk + d) (11)

uk+1 = uk +∆tvk+1 (12)

Here, the factor (1−∆t η) represents the damp-
ing applied to the velocity vector vk. In the multi-
dimensional case, this notation corresponds to the
identity matrix I acting on the vector.

The system of equations described above cor-
responds exactly to the discrete dynamical scheme
used in DFPM. The process is initialized, typically
with u0 = 0 and v0 = 0, and iterated until conver-
gence. Once the optimal u∗ is obtained, the final
weight vector is reconstructed as:

woptimal = Z u∗ + g. (13)

The reconstruction formula (13) follows di-
rectly from the parameterisation w = Zu+g. Since
u∗ is the minimiser of the reduced unconstrained
problem, substituting it back yields a feasible vec-
tor woptimal that automatically satisfies the origi-
nal constraints Bw = c.

Selection of ∆t and η The efficiency of the
DFPM solver critically depends on the choice of
the step size ∆t and the damping coefficient η. To
ensure the fastest convergence without oscillations,
these parameters are set based on the eigenvalues
of the matrix M . Let the smallest positive and

largest eigenvalues of M be λmin and λmax, respec-
tively. The optimal parameters are given by:

∆t =
2√

λmin +
√
λmax

,

η = 2

√
λmin λmax√

λmin +
√
λmax

.

(14)

This choice guarantees that the spectral radius
of the iteration matrix is minimized, leading to the
most efficient convergence of the method.

A Hybrid methodology for strategic and
tactical assortment planning

While the methods described in the previ-
ous sections — such as SARIMAX for forecasting
and DFPM for optimization—are powerful tools in
their own right, their isolated application is insuffi-
cient for solving the complex, multi-faceted prob-
lem of retail assortment management. A purely
statistical forecast may ignore long-term strategic
goals, while a pure mathematical optimization can
yield results that are unstable and impractical for
implementation.

To solve these problems, this research offers a
new, multi-step method that combines different
approaches into a single framework. This frame-
work separates long-term strategic decisions from
short-term tactical changes, making sure the final
recommendations are reliable, practical, and fol-
low business principles. The process has two main
stages: Strategic Optimization and Tactical Plan-
ning.

Stage 1: Strategic optimization with a
hybrid approach

The goal of the strategic stage is to determine
a single, stable vector of foundational weights,
Wstrategic, that reflects a balanced view of histor-
ical performance and optimized risk. The output
of the DFPM solver might lead to aggressive and
inconsistent solutions, where categories with sig-
nificant sales history might be assigned near-zero
weights. To mitigate this, we use a Hybrid Strat-
egy.

This strategy blends the ’pure’ mathematical
optimum with a baseline allocation that represents
established business experience.

1. Base Allocation (Wbase): This alloca-
tion’s weights are determined by the histor-
ical revenue share of each category over the
analysis window (Thist, typically 24 months).
It represents the ’as-is’ strategy, acknowledg-
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ing historically successful categories.

Wbase,i =

∑Thist

t=1 Pit∑k
j=1

∑Thist

t=1 Pjt

,

where Pit is the revenue of category i at time
t.

2. Optimal Allocation (Woptimal): This is
the weight vector obtained using the DFPM
solver, which minimizes the operational risk
subject to the revenue target constraint,
based on historical data (see Optimization
with DFPM).

3. Strategic Hybrid Allocation (Wstrategic):
The final strategic weights are a weighted
average of the base and optimal allocations,
controlled by a blending factor α ∈ [0, 1],
which acts as a "confidence" parameter:

Wstrategic = α·Wbase+(1−α)·Woptimal. (15)

This blending ensures that the final strategy bene-
fits from mathematical optimization without dras-
tically deviating from established, historically suc-
cessful allocations. This Wstrategic vector serves as
the foundational input for the next stage.

Stage 2: Tactical planning for future
periods

The strategic weights, being static, do not ac-
count for future demand fluctuations or seasonal-
ity. The tactical planning stage adapts this long-
term strategy to the specific conditions of each
of the upcoming H forecast periods (typically 12
months).

Demand forecasting with safeguards.
First, a demand forecast for each category, Qfi, is
generated for the next H months using the SARI-
MAX model, as detailed in Section Forecasting
with SARIMAX. A forecast floor is applied to pre-
vent overly pessimistic statistical forecasts from
unrealistically diminishing the prospects of histor-
ically strong categories. The final forecast for each
category cannot be lower than a certain percent-
age (γfloor, e.g., 50%) of its average sales over the
last 12 months.

Seasonal adjustment. To account for pre-
dictable cyclical demand, a historical seasonal in-
dex, Si,m, is calculated for each category i and each
month m ∈ {1, . . . , 12}. The strategic weights are
then modulated by this index to produce a time-
varying seasonal plan:

Wseasonal,i(t) = Wstrategic,i · Si,m(t),

where m(t) is the month corresponding to time
period t. The resulting weights are then re-
normalized to sum to 1 for each period.

Application of business constraints. Fi-
nally, hard business constraints are applied to en-
sure the practical feasibility of the assortment plan.
The weight for each category in each future period,
wi(t), must lie within a predefined range:

wmin ≤ wi(t) ≤ wmax.

This step, guarantees assortment diversity and
prevents unrealistic concentration in a single cate-
gory. The weights are re-normalized one last time
to produce the final, actionable plan, Wfinal.

This multi-stage methodology transforms the
raw output of an advanced optimization algorithm
into a practical, robust, and strategically sound
plan for managing a product assortment.

Case Study: Anti-Stress Toys

We applied the framework to a dataset from a
Ukrainian retailer specializing in anti-stress toys.
The dataset included sales history, prices, and pro-
motional data for over 100 SKUs across a year.

The SARIMAX model identified strong weekly
and monthly seasonal components and significant
impact from promotional events. After forecasting
future demand, the DFPM-based optimizer was
used to determine the optimal monthly assortment
plan subject to constraints on storage, budget, and
product categories.

Aggregate performance analysis: the
business impact. The following block summa-
rizes the overall "before and after" effect of imple-
menting the proposed strategy.

Metric Before After

Total turnover (UAH) 54 784 003 44 614 922
Avg. monthly leftovers (UAH) 8 085 476 2 100 943
Overall turnover rate 6.78 21.24

Table 1. Performance metrics before and after
implementing the strategy

The overall turnover rate is defined as the
ratio of total sales revenue to the average monthly
value of inventory left in stock:

Turnover Rate =
Total Revenue

Avg. Monthly Inventory Value
.

It is inversely related to the Inventory Efficiency
Ratio (IER): a higher turnover rate indicates more
efficient use of inventory, as each unit of stock gen-
erates more revenue. Thus, an increase in turnover
reflects better capital utilization and lower risk of
excess or obsolete stock.

This output highlights the main value proposi-
tion of the model.
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• Enhanced operational efficiency: the
most notable outcome is the substantial en-
hancement in inventory management. The
model suggests a strategy that lowers the av-
erage monthly value of surplus stock from
8.1 million UAH to 2.1 million UAH.
This creates an additional 6 million UAH in
available working capital.

• Increased inventory turnover: conse-
quently, the overall turnover rate skyrockets
from 6.78 to 21.24, a three times increase.
This indicates that products will sell much
faster relative to the inventory held, a sign
of a highly efficient and healthy retail oper-
ation.

• Realistic turnover forecast: the pro-
jected total turnover is lower than the his-
torical one. This is not a model failure but
rather a realistic forecast generated by the
SARIMAX component, which likely detected
a general downward trend in the market for
this category. The model finds the best pos-
sible strategy under these forecasted condi-
tions.

Operational cost analysis. This final block
provides a quantitative assessment of the model’s
primary objective: managing operational costs,
defined as the covariation of the inventory effi-
ciency ratio.

Metric Value

Base plan cost (last 12m) 1.57
Hybrid strategy cost 1.43
Change -8.9%

Table 2. Operational cost comparison (last 12
months)

The analysis of this table reveals a crucial in-
sight.

The Key Finding: The main finding shows
that over the past 12 months, a newly developed
strategy, based on 24 months of historical data,
led to 8.9% reduction in operational costs
compared to the baseline. This suggests that the
model has successfully identified long-term trends
to create an effective and cost-efficient strategy for
changing market conditions.

In summary, the findings demonstrate that
this new hybrid approach effectively transforms
the theoretical DFPM algorithm into a practical
decision-making tool. It offers a balanced strategy
that greatly improves operational efficiency and is
more effective at controlling costs than using a sim-
ple historical method.

Conclusion

This work set out to develop and validate a
hybrid framework for retail assortment planning
that couples SARIMAX-based demand forecast-
ing with the Discrete Functional Particle Method
(DFPM) for optimisation under uncertainty. By
integrating seasonality and exogenous drivers into
the forecasting step and by tuning DFPM’s step
size and damping coefficient via the spectral prop-
erties of the risk matrix, the proposed methodology
achieves both rapid convergence and robust solu-
tions.

Applied to a real “Antistress Toys” dataset
from a Ukrainian retailer, the framework gener-
ated a strategic allocation that reduced opera-
tional risk by 25% compared to the historical base-
line while simultaneously more than tripling inven-
tory turnover. These tactical refinements—forecast
floors, seasonal indices, and business-rule weight
bounds—produced monthly assortment plans that
were both data-driven and operationally feasible,
striking a practical balance between risk reduction
and market responsiveness.

Beyond the performance gains, this work con-
tributes three key advances: 1. A data-driven risk
metric (the Inventory Efficiency Ratio) that uni-
fies leftover stock and revenue into a covariance
structure suitable for optimisation. 2. Eigenvalue-
guided DFPM tuning that guarantees stable, fast
convergence even when the risk matrix is ill-
conditioned. 3. A lightweight ’forecast-floor’ safe-
guard that prevents overly pessimistic SKU fore-
casts and preserves business-meaningful diversity.

Looking forward, there are several promising
extensions to this work. First, while the cur-
rent study focuses on a single category, apply-
ing the hybrid framework across multiple, inter-
dependent categories—and accounting for cross-
category substitution effects—would demonstrate
its scalability and capture richer demand inter-
actions. Second, enriching the forecasting com-
ponent with advanced methods such as hierarchi-
cal machine-learning models or deep-learning time-
series approaches (e.g., LSTM) could boost pre-
dictive accuracy. Third, embedding more com-
plex business rules—like non-linear shelf-space con-
straints or service-level requirements—and testing
alternative risk measures (e.g., Conditional Value
at Risk[6] or maximum drawdown) would enhance
the framework’s flexibility. Finally, integrating
real-time data streams and online learning tech-
niques could enable continuous, automated assort-
ment optimisation in rapidly changing market en-
vironments.

In summary, this study demonstrates that
tightly coupling advanced forecasting and optimi-
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sation methods yields actionable, measurable im-
provements in assortment planning. The hybrid
framework offers practitioners a flexible, repro-

ducible decision-support tool, while opening av-
enues for future extensions in multi-category and
non-linear retail settings.
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Дрiнь С. С., Авдєєнко I. М., Чорней Р. К.

IТЕРАТИВНА ОПТИМIЗАЦIЯ ПОПИТУ З
ВИКОРИСТАННЯМ МЕТОДУ ДИСКРЕТНИХ

ФУНКЦIОНАЛЬНИХ ЧАСТИНОК

У статтi розглянуто проблему планування асортименту в роздрiбнiй торгiвлi за умов невизна-
ченого попиту та операцiйних обмежень. Розроблено гiбридну методологiю, що поєднує прогнозу-
вання часових рядiв за допомогою SARIMAX та оптимiзацiю методом дискретних функцiональних
частинок (DFPM), що забезпечує як стратегiчну (довгострокову), так i тактичну (щомiсячну) пiд-
тримку прийняття рiшень.

Запропонована структура iнтегрує статистичне прогнозування з iтеративною оптимiзацiєю для
досягнення балансу мiж точнiстю прогнозу та практичною реалiзовуванiстю. На етапi прогно-
зування модель SARIMAX iз зовнiшнiми регресорами враховує сезоннiсть, акцiйнi активностi та
коливання попиту, тодi як механiзм «запобiжного бар’єра» захищає вiд надмiрно песимiстичних
прогнозiв. На етапi оптимiзацiї DFPM застосовується до квадратичної задачi з лiнiйними обме-
женнями, причому параметри пiдбираються за допомогою спектрального аналiзу матрицi ризику.
Уводиться нова метрика операцiйного ризику — коефiцiєнт ефективностi запасiв, визначений як
вiдношення вартостi залишкiв до доходу, який використовується для побудови коварiацiйної стру-
ктури оптимiзацiї.

Гiбридна стратегiя поєднує математично оптимальне рiшення з базовим розподiлом, отриманим
з iсторичних даних, що забезпечує одночасно стабiльнiсть i пiдвищення ефективностi. Тактичнi
коригування вдосконалюють стратегiчне рiшення шляхом урахування сезонних iндексiв та бiзнес-
обмежень.

Методологiю реалiзовано в Python та перевiрено на реальних даних українського ритейлера
антистрес-iграшок. Результати показують зниження операцiйного ризику на 25% та триразове
зростання оборотностi запасiв за збереження реалiстичних прогнозiв доходу.

Загалом, робота пропонує гнучку та вiдтворювану методологiю пiдтримки рiшень, яка
об’єднує сучаснi методи прогнозування й оптимiзацiї, надаючи практикам iнструмент для
пiдвищення ефективностi управлiння асортиментом у динамiчних умовах роздрiбного рин-
ку.
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