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PORTFOLIO OPTIMIZATION FOR REAL DATA:
APPROACHES AND CHALLENGES

Portfolio optimization continues to be a dynamic field within finance, integrating new theories and
technologies to better meet investor needs. As financial markets evolve, so too will the methodologies
used to optimize portfolios, making it an area ripe for ongoing research and innovation.

Classical Markowitz approach is based on the mean-variance optimization, which quantifies the trade-
off between risk (variance) and return (expected return). This approach had some limitations. It assumes
investors are rational, markets are efficient, and asset returns are normally distributed. As a response to
the some limitations of Markowitz theory minimum-VaR approach was appeared. This theory recognizes
some assymetry, that investors are more concerned about potential losses than gains and incorporates
downside risk measures like Value-at-Risk.

Despite advancements of the classical Markowitz theory and minimum VaR approach, challenges
remain in accurately estimating parameters, singularity of the covariance matrix and managing risks in
volatile markets.

In this paper we consider the mean-variance and mean-Var optimal portfolios and take into account
the case when the covariance estimated matrix is singular. We use the Moore-Penrose pseudoinverse
and Singular Value Decomposition (SVD) to find solutions. We apply these approaches and methodics to
real financial data, construct mean-variance and mean-Var optimal portfolios and compare the dynamics
of expected returns (mean), volatility and VaR for it.

Thanks to the proposed approaches, the investor gets a tool that allows him to make decisions about
choosing an approach to building an optimal portfolio, as well as taking into account the singularity of
the covariance matrix.

Keywords: portfolio optimization, mean-variance analysis, Markowitz optimal portfolio, value-at-
risk (VaR), min-VaR analysis, Moore-Penrose pseudoinverse, parameter estimation.

Introduction

Portfolio optimization is a critical area in fi-
nance that focuses on selecting the best mix of
assets to maximize returns while minimizing risk.
The history of portfolio optimization is rich and
has evolved significantly over the decades. The
idea of diversification dates back centuries, with
early investors recognizing that holding a vari-
ety of investments could reduce risk. The for-
malization of portfolio optimization began with
Harry Markowitz’s seminal paper "Portfolio Selec-
tion," published in 1952 [8]. Markowitz introduced
the concept of mean-variance optimization, which
quantifies the trade-off between risk (variance) and
return (expected return). Moreover, Markowitz
developed the concept of the efficient frontier, a
graphical representation of optimal portfolios that
offer the highest expected return for a given level
of risk.

However Markowitz theory had some limita-
tions. It assumes investors are rational and risk-
averse, markets are efficient, and asset returns
are normally distributed. Beside this, Markowitz
mean-variance optimization requires inverting the

covariance matrix to find the optimal portfolio
weights. If the matrix is singular, there are either
infinitely many solutions or none, and the standard
approach fails.

As a response to the some limitations of
Markowitz theory minimum-VaR theory was ap-
peared [1],[2]. It incorporates downside risk mea-
sures like Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR)[7], [10]. This theory recog-
nizes some assymetry, that investors are more con-
cerned about potential losses than gains, leading
to different optimization approaches [3]. In [5] es-
timators, confidence regions, and test for minimum
VaR and CVaR optimal portfolios were considered.

Despite advancements of Markowitz and
minimum-VaR theories, the challenges remain in
accurately estimating parameters, managing risks
in volatile markets, and adapting to changing eco-
nomic conditions.

If the estimate covariance matrix is singular,
there are either infinitely many solutions or none,
and the standard approaches fail. In this case was
proposed use the Moore-Penrose pseudoinverse or
Singular Value Decomposition (SVD) to find solu-
tions [4]. These methods allow for a solution that
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minimizes the L2-norm (the sum of squared port-
folio weights), providing a unique and stable result
among the infinite possibilities [3].

In this paper we focus on the application of
mean-variance and min-Var optimal portfolios to
real data and take into account the case when
the covariance estimated matrix is singular. We
use the Moore-Penrose pseudoinverse and Singu-
lar Value Decomposition (SVD) to find solutions.
We apply this methodic to real financial data, con-
struct mean-variance and min-VaR optimal portfo-
lios and compare the dynamics of expected returns
(means), volatility and VaR for it.

The mean-variance and min-VaR optimal
portfolios: construction

The mean-variance portfolio. Let 𝑥𝑡 =
= (𝑥1𝑡, . . . , 𝑥𝑘𝑡)

′ be a vector of returns for 𝑘-
dimensional risky assets at time point 𝑡 = 1, . . . , 𝑛.
We assume that 𝑥1, . . . , 𝑥𝑛 are independently and
identically normally distributed, with a mean vec-
tor 𝜇 and covariance matrix Σ. We also assume
that Σ may be singular, with 𝑟𝑎𝑛𝑘(Σ) = 𝑟𝑛 < 𝑛 <
< 𝑘 + 1.

Furthermore, let 𝑤 = (𝑤1, . . . , 𝑤𝑘)
′ be a 𝑘-

dimensional vector of portfolio weights, where 𝑤𝑖

represents the portion of wealth allocated to the
𝑖-th asset and 1′𝑘𝑤 = 1, where 1𝑘 stands for the
𝑘-dimensional vector of ones.

We denote the expected return and variance of
the portfolio by 𝑅 = 𝑤′𝜇 and 𝑉 = 𝑤′Σ𝑤, respec-
tively.

Following the classical mean-variance expected
utility (EU) approach introduced by Markowitz,
the optimal portfolio maximizes the trade-off be-
tween expected return and risk (measured as vari-
ance). The optimization problem is formulated as:

max
w

[𝜇𝑤−
𝜏

2
·𝜎2

𝑤] =

𝑘∑︁
𝑖=1

𝜇𝑖𝑤𝑖−
𝜏

2

⎛⎝ 𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝜎𝑖𝑗𝑤𝑖𝑤𝑗

⎞⎠
(1)

subject to
𝑘∑︁

𝑖=1

𝑤𝑖 = 1

where 𝜏 > 0 is the risk-aversion parameter, which
reflects the investor’s tolerance to risk. A larger
value of 𝜏 implies that the investor places more
weight on minimizing risk, while a smaller value
emphasizes return maximization. The closed-form
solution to the optimization problem (1) is given
by:

w =
Σ−11𝑘

1𝑇
𝑘Σ

−11𝑘
+

1

𝜏
𝑅𝜇 (2)

where 𝑅 is the projection matrix that orthogonal-
izes the return vector 𝜇 with respect to the con-
straint 1′

𝑘𝑥 = 1:

𝑅 = Σ−1 − Σ−11𝑘1
𝑇
𝑘Σ

−1

1𝑇
𝑘Σ

−11𝑘
(3)

and 1𝑘 is a 𝑘-dimensional vector of ones.
The optimal portfolios (EU) as proposed by

Markowitz’s theory lie on the upper part of
the parabola in the mean-variance space. This
parabola is known as the efficient frontier (EF)
and, if Σ is positive definite, is given by

(𝑅−𝑅GMV)
2 = 𝑠(𝑉 − 𝑉GMV)

where

𝑅GMV =
1′
𝑘Σ

−1𝜇

1′
𝑘Σ

−11𝑘
(4)

and

𝑉GMV =
1

1′
𝑘Σ

−11𝑘
(5)

are the expected return and variance of the global
minimum variance portfolio (GMVP) given by
(see, e.g., [6]) with parameter

𝑠 = 𝜇′𝑅𝜇,

where R is defined by 3
Thus, for constructing the optimal portfolio fol-

lowing the classical mean-variance expected utility
(EU) approach introduced by Markowitz, we need
just to compute the weights by 2. The expected
return (mean) R of the EU optimal portfolio one
can compute by 3, the variance is defined by 𝑉 =
= 𝑤′Σ𝑤 and Σ is positive definite.

The minimum-VaR portfolio. Markowitz
theory assumes investors are rational and risk-
averse, markets are efficient, and asset returns are
normally distributed.

Nevertheless real world admits some assymetry,
investors are more concerned about potential losses
than gains. In the papers [1; 2] were proposed
to use Value-at-Risk (VaR) as risk measures in
Markowitz’s optimization problem, instead of the
traditional variance.

VaR is defined as the potential loss of an in-
vestment portfolio at a given confidence level. This
measure is believed to provide a more accurate rep-
resentation of the risk in investor problem [11] and
portfolio management.

Formally, the value-at-risk of level 𝛼, 0 < 𝛼 ≤ 1
is a probability functional, defined as 𝛼-quantile of
the profit (loss) function 𝑌

𝑉@𝑅𝛼(𝑌 ) = 𝐺−1(𝛼) = 𝑖𝑛𝑓{ 𝑦 ∈ 𝑅 : 𝐺(𝑌 ) ≥ 𝛼} ,

where 𝐺 is the distribution function of 𝑌 , 𝐺−1 is
the quantile function of 𝛼, 0 < 𝛼 ≤ 1.
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It is worth to note that often it is recommended
(for examples by regulators Basel I and Basel II) to
denote 𝑉 𝑎𝑅 as the low quantile with minus sign:

𝑉@𝑅𝛼(𝑌 ) = −𝐺−1(𝛼)

For portfolio analysis we use the rate of return 𝑥𝑤

as the profit (loss) function 𝑌 . Then the VaR at
the confidence level 𝛼 ∈ (0.5, 1) (VaR𝛼) is defined
as the rate of return 𝑥𝑤 such that

𝑃 {𝑥𝑤 < −VaR𝛼} = 1− 𝛼 (6)

where
𝑥𝑤 = 𝑥′𝑤.

The optimization problem, as proposed by [1; 2],
can be stated as follows:

𝑉 𝑎𝑅𝛼 → min, subject to 1′
𝑘𝑤 = 1. (7)

[1; 2] have derived the exact expressions of its
weights and characteristics. In addition, they have
shown that the necessary and sufficient condition
for constructing the minimum VaR portfolio, i.e.,
for a solution to exist in (7), is 𝑠 < 𝑧2𝛼. Here, the
quantity 𝑧𝛼 = −Φ−1(1−𝛼) denotes the 𝛼-quantile
of the standard normal distribution.

In the paper [5] were introduced and used alter-
native expressions of the weights and of the charac-
teristics of the minimum VaR portfolio in terms of
(4) and (5). The weights of the portfolio obtained
in (7) are given by 𝑤VaR:

𝑤𝑉 𝑎𝑅 = 𝑤GMV +

√
𝑉GMV√︀
𝑧2𝛼 − 𝑠

𝑅𝜇, (8)

where

𝑤𝐺𝑀𝑉 =
Σ−11𝑘

1′
𝑘Σ

−11𝑘
.

The portfolio’s value-at-risk is 𝑀VaR, with a
mean of 𝑅VaR and variance of 𝑉VaR:

𝑀VaR =
√︀
𝑧2𝛼 − 𝑠

√︀
𝑉GMV −𝑅GMV.

𝑅VaR = 𝑤′
VaR𝜇 = 𝑅GMV +

𝑠√︀
𝑧2𝛼 − 𝑠

√︀
𝑉GMV,

Thus, for constructing the min-VaR optimal port-
folio we need to compute the weights 𝑤VaR by 8.
The expected return (mean) 𝑅VaR in this case one
can compute by 8, the variance is defined by 𝑉 =
= 𝑤′Σ𝑤 and Σ is positive definite.

The VaR evaluation. In this section we dis-
cuss in more details the problems of VaR estima-
tion.

For evaluating 𝑉 𝑎𝑅 there are some meth-
ods. 𝑉 𝑎𝑅 can be estimated either parametri-
cally (for example, variance-covariance 𝑉 𝑎𝑅) or
non-parametrically (for examples, historical sim-
ulation 𝑉 𝑎𝑅 or resampled 𝑉 𝑎𝑅). A McKinsey re-
port published in May 2012 estimated that 85%
of large banks were using historical simulation and
the other 15% used Monte Carlo methods. We
can notice, that in [13] we applied the Markowitz
technics to construct the optimal portfolio for real
data. Moreover, we apply Monte Carlo method to
compute 𝑉 𝑎𝑅 for constructed portfolios with some
assumption of their distribution. In [12], [14] we
evaluate 𝑉 𝑎𝑅 by parametric method as 𝛼-quantile
of the loss-profit function 𝐺 with known parame-
ters. In this paper we focus on historical and non-
parametric methods.

Historical (non-parametric) method.
This is the most intuitive approach, relying solely
on historical return data without any distribu-
tional assumptions. The method involves the fol-
lowing steps:

• Sort the historical portfolio returns 𝑥𝑤 in as-
cending order.

• Identify the quantile corresponding to the
loss level 𝛼 ∈ (0, 1), which corresponds to
the confidence level (1− 𝛼).

The VaR is defined by 6 and estimated as em-
pirical (1− 𝛼)-quantile of the sorted sample 𝑥𝑤.

Parametric (variance-covariance)
method. This method assumes that the returns
of the asset or portfolio are normally distributed.
Given the standard deviation 𝜎 and the portfolio
value 𝑊 , the VaR for a single period is calculated
as:

𝑉 𝑎𝑅𝛼 = 𝑧𝛼 · 𝜎 ·𝑊,

where 𝑧𝛼 = −Φ−1(1 − 𝛼) is the standard normal
quantile corresponding to the specified loss level 𝛼.

For a multi-period horizon of length 𝑡, the for-
mula becomes:

𝑉 𝑎𝑅𝛼(𝑡) = 𝑧𝛼 · 𝜎 ·𝑊 ·
√
𝑡,

assuming the returns are independent and identi-
cally distributed across time.

Commonly used values of 𝛼 include 0.1, 0.05,
and 0.01, which correspond to confidence levels of
90%, 95%, and 99%, respectively. The associated
quantiles 𝑧𝛼 are summarized below:

Confidence level 𝑧𝛼
90% 1.282
95% 1.645
99% 2.326
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Example 1. Let us estimate the VaR of a pre-
viously constructed portfolio using the parametric
method. Consider the following inputs:

Σ =

⎡⎣0.05 0.01 0.02
0.01 0.04 0.015
0.02 0.015 0.03

⎤⎦ ,

𝜇 =

⎡⎣0.150.10
0.12

⎤⎦ ,

𝛼 = 0.95, 𝑊 = 1

Portfolio weights: [0.289, 0.289, 0.422]
First, we compute the portfolio variance:

𝜎 =
√
0.02307 ≈ 0.1519

Then, the 95% Value-at-Risk is calculated as:

𝑉 𝑎𝑅0.95 = 1.645× 0.1519 ≈ 0.250

Hence, with 95% confidence, the maximum ex-
pected portfolio loss over the period is approxi-
mately not more than 25% of the portfolio value.

Estimators: non-singular and singular cases

In practice Σ is an unknown matrix and should
be estimated using historical values of asset re-
turns. Given a sample of 𝑛 independent observa-
tions 𝑥1, . . . , 𝑥𝑛 of returns on 𝑘 assets we calculate
the sample estimators of 𝜇 – the mean vector and
Σ – the covariance matrix, respectively by

𝑥 =
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖, 𝑆 =
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥)′.

Non-singular case. If the sample covariance
matrix 𝑆 is non-singular, then the formulas for con-
structing mean-variance portfolio or minimal VaR
portfolio can be applied directly by replacing the
unknown population covariance matrix Σ with the
sample covariance matrix 𝑆.

Example 2: Solving the Portfolio Optimization
Problem

Given the covariance matrix Σ, expected re-
turns vector 𝜇, and risk aversion parameter 𝜏 :

Σ =

⎡⎣0.05 0.01 0.02
0.01 0.04 0.015
0.02 0.015 0.03

⎤⎦ , 𝜇 =

⎡⎣0.150.1
0.12

⎤⎦ , 𝜏 = 10

The inverse of the covariance matrix is:

Σ−1 =

⎡⎣ 27.27 0 −18.18
0 30.77 −15.38

−18.18 −15.38 53.15

⎤⎦

The first term of the solution:

Σ−11

1𝑇Σ−11
=

⎡⎣0.2060.349
0.445

⎤⎦
The second term:

1

𝜏
𝑅𝜇 =

⎡⎣ 0.0829
−0.0600
−0.0222

⎤⎦
Final portfolio weights:

x =

⎡⎣0.2890.289
0.422

⎤⎦
Python Implementation. The function

optimize_portfolio_by_Markowitz_2_test
takes the following parameters:

• mean_returns – vector of expected returns
• cov_matrix – covariance matrix
• T – risk aversion parameter 𝜏

Figure 1. Function implementation of Markowitz
Model 2

The function uses numpy.linalg.solve to
compute the inverse, constructs a vector of ones,
and calculates the optimal weights according to the
extended Markowitz model.

Figure 2. Resulting optimal portfolio weights

This example demonstrates how to build an op-
timal portfolio that balances expected return and
risk using the extended Markowitz model.

Singular case. In practical applications,
the sample covariance matrix 𝑆 may be singular.
When 𝑆 is nonsingular, it is possible to use the
Moore-Penrose pseudoinverse instead of the regu-
lar matrix inverse [4; 9].

The Moore-Penrose pseudoinverse of a matrix
𝐴 ∈ R𝑚×𝑛, denoted by 𝐴+, is defined as the
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unique matrix that satisfies the following four con-
ditions:

𝐴𝐴+𝐴 = 𝐴,

𝐴+𝐴𝐴+ = 𝐴+,

(𝐴𝐴+)⊤ = 𝐴𝐴+,

(𝐴+𝐴)⊤ = 𝐴+𝐴.

This matrix generalizes the concept of an inverse
to possibly singular or non-square matrices.

To compute the Moore-Penrose pseudoinverse
in practice, one typically uses the Singular Value
Decomposition (SVD). Given a matrix 𝐴 of size
𝑚× 𝑛, it can be decomposed as:

𝐴 = 𝑈Σ𝑉 ⊤,

where 𝑈 and 𝑉 are orthogonal matrices, and Σ is a
diagonal matrix with non-negative singular values.
The pseudoinverse is then given by:

𝐴+ = 𝑉 Σ+𝑈⊤,

where Σ+ is obtained by taking the reciprocal of
the non-zero entries of Σ and transposing the re-
sulting matrix.

Example 3.
In this example we would like to demonstrate

how to compute the inverted matrix by hands and
by Python. Consider the singular matrix:

𝐴 =

[︂
3 6
−1 −2

]︂
Compute the determinant:

det(𝐴) = 3 · (−2)− 6 · (−1)

= −6 + 6 = 0

Since det(𝐴) = 0, matrix 𝐴 is singular and can-
not be inverted classically.

SVD decomposition:

𝐴 = 𝑈Σ𝑉 𝑇

Singular values:

𝜎1 =
√
50, 𝜎2 = 0

Σ =

[︂√
50 0
0 0

]︂
, Σ+ =

[︂ 1√
50

0

0 0

]︂
Matrices 𝑈 and 𝑉 :

𝑈 =

[︂
−0.9487 −0.3162
0.3162 −0.9487

]︂
, 𝑉 =

[︂
−0.4472 −0.8944
−0.8944 0.4472

]︂

Transpose of 𝑈 :

𝑈𝑇 =

[︂
−0.9487 0.3162
−0.3162 −0.9487

]︂
Intermediate multiplication:

Σ+𝑈𝑇 =

[︂ 1√
50

0

0 0

]︂ [︂
−0.9487 0.3162
−0.3162 −0.9487

]︂
=

[︂
−0.1341 0.0447

0 0

]︂
Final multiplication:

𝐴+ =

[︂
−0.4472 −0.8944
−0.8944 0.4472

]︂ [︂
−0.1341 0.0447

0 0

]︂
=

[︂
0.06 −0.02
0.12 −0.04

]︂
Final result:

𝐴+ =

[︂
0.06 −0.02
0.12 −0.04

]︂
Now, consider the same example using a

Python implementation and verify the result.
We use the same matrix:

𝐴 =

[︂
3 6
−1 −2

]︂
To verify the manual result, we compute the

pseudoinverse using Python.
Determinant:

det(𝐴) = 0.0

Using np.linalg.pinv:

𝐴+ =

[︂
0.06 −0.02
0.12 −0.04

]︂
Using np.linalg.svd and manual reconstruc-

tion:
𝐴+ =

[︂
0.06 −0.02
0.12 −0.04

]︂
.

To construct mean-variance optimal portfolio
in the case of a singular sample covariance matrix
𝑆, the portfolio weights under the expected utility
criterion are estimated using:

̂︀w+
𝐸𝑈 =

S+1𝑘

1⊤
𝑘 S

+1𝑘
+ 𝛼−1 ̂︀R+x̄,

where ̂︀R+ = S+ − S+1𝑘1
⊤
𝑘 S

+

1⊤
𝑘 S

+1𝑘
.

Similarly, the Global Minimum Variance
(GMV) portfolio estimators in the singular case
are obtained as:

𝑅̂+
GMV =

1⊤
𝑘 𝑆

+ 𝑥

1⊤
𝑘 𝑆

+1𝑘
,

𝑉 +
GMV =

1

1⊤
𝑘 𝑆

+1𝑘
,

ŵ+
GMV =

𝑆+1𝑘

1⊤
𝑘 𝑆

+1𝑘
.
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To construct the Value-at-Risk (VaR) efficient
portfolio in the singular case we compute the port-
folio weights in the form:

𝑤̂+
VaR = 𝑤̂+

GMV +

√︁
𝑉 +
GMV√︀

𝑧2𝛼 − 𝑠+
· 𝑅̂+𝑥̄.

where

𝑠+ = 𝑥̄⊤𝑅̂+𝑥̄, and 𝑅̂+ = 𝑆+ − 𝑆+1𝑘1
⊤
𝑘 𝑆

+

1⊤𝑘 𝑆
+1𝑘

.

Then, for singular case the portfolio’s value-at-risk,
the estimated VaR-efficient return and variance are
given by:

𝑀̂+
VaR =

√︀
𝑧2𝛼 − 𝑠+ ·

√︁
𝑉 +
GMV − 𝑅̂+

GMV,

𝑅̂+
VaR = 𝑅̂+

GMV +
𝑠+√︀

𝑧2𝛼 − 𝑠+
·
√︁
𝑉 +
GMV,

𝑉 +
VaR =

𝑧2𝛼
𝑧2𝛼 − 𝑠+

· 𝑉 +
GMV.

Example 4. In this example we would like to
demonstrate how to construct Marcowitz portfo-
lio in the singular case by hands and by Python.
Now we consider an example of Markowitz port-
folio optimization with an investor risk aversion
coefficient 𝜏 = 4000. This case illustrates a sin-
gularity scenario since the covariance matrix has a
zero determinant. The Singular Value Decomposi-
tion (SVD) algorithm is demonstrated along with
step-by-step calculations.

𝜇1 = 0.1, 𝜇2 = 0.08, 𝜏 = 4000

Σ =

[︂
2 4
1 2

]︂
To compute the Moore–Penrose pseudoinverse

of Σ, we proceed as follows:

ΣΣ𝑇 =

[︂
2 4
1 2

]︂ [︂
2 1
4 2

]︂
=

[︂
20 10
10 5

]︂

det

[︂
20− 𝜆 10
10 5− 𝜆

]︂
= (20−𝜆)(5−𝜆)−100 = 𝜆2−25𝜆 = 0

𝜆1 = 25, 𝜆2 = 0, 𝜎1 = 5, 𝜎2 = 0

Σ =

[︂
5 0
0 0

]︂
, Σ+ =

[︂
1
5 0
0 0

]︂
For the eigenvectors of ΣΣ𝑇 , we have:

(ΣΣ𝑇 − 25𝐼)𝑢⃗ = 0 ⇒
[︂
−5 10
10 −20

]︂
𝑢⃗1 = 0 ⇒

𝑢̂1 =
1√
5

[︂
2
1

]︂

(ΣΣ𝑇 − 0𝐼)𝑢⃗ = 0 ⇒
[︂
20 10
10 5

]︂
𝑢⃗2 = 0 ⇒

𝑢̂2 =
1√
5

[︂
−1
2

]︂

𝑈 =

[︃
2√
5

−1√
5

1√
5

2√
5

]︃

𝑣1 =
1

5
Σ𝑇𝑢1 =

1

5
√
5

[︂
5
10

]︂
=

1√
5

[︂
1
2

]︂
,

𝑣2 =
1√
5

[︂
−2
1

]︂

𝑉 =

[︃
1√
5

−2√
5

2√
5

1√
5

]︃

𝑉 Σ+ =

[︃
1

5
√
5

0
2

5
√
5

0

]︃

𝑈𝑇 =

[︃
2√
5

1√
5

−1√
5

2√
5

]︃

Σ+ = 𝑉 Σ+𝑈𝑇 =

[︂
2
25

1
25

4
25

2
25

]︂
Next, we calculate the optimal portfolio using

this pseudoinverse:

Σ+ =

[︂
0.08 0.04
0.16 0.08

]︂
, 𝜇 =

[︂
0.1
0.08

]︂
, 1𝑘 =

[︂
1
1

]︂

Σ+1𝑘 =

[︂
0.12
0.24

]︂
, 1⊤

𝑘 Σ
+1𝑘 = 0.36

Σ+1𝑘

1⊤
𝑘 Σ

+1𝑘
=

[︂
1
3
2
3

]︂
Σ+𝜇 =

[︂
0.012
0.024

]︂
,

1

2𝜏
=

1

8000

1

8000
· Σ+𝜇 =

[︂
1.5× 10−6

3× 10−6

]︂

𝑤𝐸𝑈 =

[︂
1
3
2
3

]︂
+

[︂
1.5× 10−6

3× 10−6

]︂
=

[︂
0.3330015
0.666003

]︂
Now we replicate the same example using a

Python program to verify the correctness of the
manual computations. The result is a vector 𝑥
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representing the optimal asset weights that simul-
taneously account for risk minimization, expected
return, and the investor’s risk aversion. For clar-
ity, the program also prints auxiliary results such
as the pseudoinverse matrix Σ+, individual com-
ponents 𝑥(1), 𝑥(2), and the final portfolio weights.

We use the same input:

𝜇1 = 0.1, 𝜇2 = 0.08, 𝜏 = 4000, Σ =

[︂
2 4
1 2

]︂
The output of the Python implementation is:

det(Σ) = 0.0

Σ+ =

[︂
0.08 0.04
0.16 0.08

]︂

Minimum variance component =
[︂
0.33333333
0.66666667

]︂
,

Risk-adjusted return component =
[︂
1 · 10−7

2 · 10−7

]︂

Optimal portfolio weights =
[︂
0.33333343
0.66666687

]︂
These results confirm the accuracy of both the

manual and programmatic approaches to portfolio
optimization in the presence of a singular covari-
ance matrix.

Illustration for the Real Financial Data

Markowitz Portfolio. The data for analysis
was obtained from the Yahoo Finance API using
the Python library yfinance. For each asset, his-
torical daily closing prices were downloaded for the
period from November 30, 2022 to November 30,
2023.

The portfolio consists of five assets:
• Amazon (AMZN) - Technology
• Mastercard (MA) - Finance
• Netflix (NFLX) - Entertainment
• Uber (UBER) - Transport
• Adobe (ADBE) - Software
Two values of the 𝜏 parameter were selected for

the study:
• 𝜏 = 20 — aggressive strategy focusing on

maximizing return
• 𝜏 = 100 — conservative strategy aiming at

minimizing risk

Parameter Value
Optimal weights
AMZN 23.2%
MA 2.3%
NFLX 43.9%
UBER 10.0%
ADBE 20.6%
Portfolio volatility 0.01292
Return distribution Not normal
VaR (95%)
Parametric 0.336805
Historical 0.020637

Table 1. Portfolio characteristics for 𝜏 = 20

Parameter Value
Optimal weights
AMZN 5.5%
MA 4.0%
NFLX 78.7%
UBER 5.7%
ADBE 6.1%
Portfolio volatility 0.01118
Return distribution Not normal
VaR (95%)
Parametric 0.291376
Historical 0.017616

Table 2. Portfolio characteristics for 𝜏 = 100

Figure 3. Portfolio wealth dynamics for Markowitz
portfolio with 𝜏 = 20 and 𝜏 = 100

Figure 4. Parametric VaR dynamics for Markowitz
portfolio with 𝜏 = 20 and 𝜏 = 100
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Figure 5. Historical VaR dynamics for Markowitz
portfolio with 𝜏 = 20 and 𝜏 = 100

Figure 6. Portfolio wealth dynamics for Markowitz
portfolio with 𝜏 = 20 and 𝜏 = 100

Our analysis highlights how varying the 𝜏 pa-
rameter impacts portfolio behavior. With 𝜏 = 20,
the portfolio remains diversified—43.9% in NFLX,
23.2% in AMZN, and 20.6% in ADBE. A shift to
a conservative 𝜏 = 100 results in a highly con-
centrated allocation (78.7% in NFLX) and reduces
volatility by 13.5%.

This is confirmed by declines in both paramet-
ric VaR (from 0.337 to 0.291) and historical VaR
(from 0.021 to 0.018), indicating lower risk. Given
the non-normal return distribution, historical VaR
proves more reliable.

Overall, the analysis shows how adjusting 𝜏 bal-
ances concentration and risk, linking theoretical
models to real market dynamics. The findings un-
derscore the importance of strategy calibration for
achieving targeted risk-return profiles.

Minimum VaR portfolio. The data for this
analysis was obtained using the same methodology
as in the previous example, sourced from the Ya-
hoo Finance API via the yfinance Python library.
The portfolio comprises the same five assets: Ama-
zon (AMZN), Mastercard (MA), Netflix (NFLX),
Uber (UBER), and Adobe (ADBE), with histor-
ical daily closing prices covering the period from
November 30, 2022, to November 30, 2023.

The optimal weights for the Minimum VaR
Portfolio were calculated to minimize the Value-
at-Risk (VaR). The resulting allocation is:

Parameter Value
Optimal weights
AMZN 25.59%
MA 0.14%
NFLX 42.56%
UBER 31.71%
ADBE 0.00%
Portfolio volatility 0.01379
Return distribution Not normal
VaR (95%)
Parametric 0.359239
Historical 0.019444

Table 3. Key characteristics of the VaR-min portfolio.

Figure 7. Portfolio wealth dynamics for the
min-VaR portfolio.

Figure 8. Portfolio volatility dynamics for the
min-VaR portfolio.

Figure 9. Historical and parametric VaR dynamics
for the min-VaR portfolio.

The analysis demonstrates that the minimum
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VaR portfolio is predominantly allocated to Net-
flix (NFLX) and Uber (UBER), with only marginal
exposure to Mastercard (MA) and Adobe (ADBE).
This allocation pattern reflects the optimiza-
tion objective of minimizing Value-at-Risk (VaR),
which naturally favors assets that have shown
greater stability during adverse market conditions.

Compared to the conservative Markowitz port-
folio (𝜏 = 100), the VaR-min portfolio exhibits
slightly higher volatility. However, it achieves
marginally lower historical VaR, highlighting its
superior resilience during periods of market stress.
Given the non-normal nature of return distribu-
tions, historical VaR emerges as a more reliable in-
dicator of downside risk than the parametric mea-
sure.

Conclusion and discussion

In the paper two approaches to portfolio opti-
mization were considered: the mean-variance and
min-VaR technics. We apply these approaches to
real financial data.

Firstly we estimate the parameters and take
into account the case when the covariance esti-
mated matrix is singular. We use the Moore-
Penrose pseudoinverse and Singular Value Decom-
position (SVD) to find solutions and demonstrate
this in terms of some example.

After that we construct mean-variance and
min-VaR optimal portfolios and compare the dy-
namics of portfolio wealth (means), volatility and
Value-ar-risk for it.

The analysis provided in Python demonstrates
some interesting facts. For Marcowitz portfolio we
see how adjusting 𝜏 balances concentration and
risk, linking theoretical models to real market dy-

namics. The findings underscore the importance
of strategy calibration for achieving targeted risk-
return profiles.

Minimum VaR allocation pattern reflects the
optimization objective of minimizing Value-at-
Risk (VaR), which naturally favors assets that have
shown greater stability during adverse market con-
ditions.

The time dynamics of portfolio mean and VaR
confirm the effectiveness of min-VaR strategy in
balancing risk and return. By prioritizing VaR
minimization over traditional mean-variance ob-
jectives, the resulting portfolio provides a distinct
and practical alternative framework for portfolio
construction.

This min-VaR approach underscores the value
of targeted optimization in modern portfolio the-
ory: by explicitly focusing on risk protection, in-
vestors can achieve portfolios that are not only the-
oretically sound but also better aligned with real-
world risk management objectives.

Theoretical researches (see for example [1] )
show that the min-VaR optimization problem is
equivalent to Markowitz’s optimization problem if
the returns on assets are multivariate normally dis-
tributed. As a result, all optimal portfolios ob-
tained by solving (7) are lying on the EF, the set of
optimal portfolios resulting from Markowitz’s ap-
proach. The returns on real assets are not mostly
multivariate normally distributed. It is a reason
why the min-VaR and mean-variance portfolios
demonstrate differebt behavour for real data.

Thanks to the analysis to proposed approaches,
the investor gets a tool that allows him to make de-
cisions about choosing an approach to building an
optimal portfolio, as well as taking into account
the singularity of the covariance matrix.
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Бурдим А. А., Данилюк Є. А., Щестюк Н. Ю.

ПОРТФЕЛЬНА ОПТИМIЗАЦIЯ ДЛЯ РЕАЛЬНИХ
ДАНИХ: ПIДХОДИ ТА ВИКЛИКИ

Теорiя портфельної оптимiзацiї продовжує бути динамiчною галуззю у фiнансах, iнтегруючи
новi теорiї та пiдходи для кращого задоволення потреб iнвесторiв. З розвитком фiнансових ринкiв
розвиватимуться й новi пiдходи для оптимiзацiї портфелiв, що робить цей напрям сприятливим
для появи нових дослiджень та iнновацiй.

Класичний пiдхiд Марковiца базується на оптимiзацiї функцiї, яка кiлькiсно визначає компро-
мiс мiж ризиком (дисперсiєю) та очiкуваною дохiднiстю. Проте цей пiдхiд має деякi обмеження.
Зокрема, вiн припускає, що iнвестори рацiональнi, їхнє ставлення до ризику регулюється деяким
параметром, ринки ефективнi, а дохiднiсть активiв розподiлена нормально. У вiдповiдь на обме-
ження теорiї Марковiца з’явився iнший пiдхiд, що визнає певну асиметрiю, тобто iнвестори бiль-
ше стурбованi потенцiйними збитками, нiж прибутками. Цей пiдхiд базується на мiнiмiзацiї так
званого показника величини ризику Value-at-Risk. Незважаючи на досягнення класичної теорiї
Марковiца та пiдходу мiнiмiзацiї VaR-показника, залишаються виклики, пов’язанi з проблемами
оцiнки параметрiв, можливiстю появи сингулярної оцiночної коварiацiйної матрицi та управлiнням
ризиками на волатильних ринках.

У цiй статтi ми розглядаємо побудову оптимальних портфелiв як за пiдходом Марковiца, так
i за мiнiмiзацiєю показника величини ризику, а також враховуємо випадок, коли коварiацiйна
оцiночна матриця є сингулярною. Ми використовуємо псевдообернений метод Мура—Пенроуза та
розкладання за сингулярним значенням (SVD) для пошуку рiшень. Ми застосовуємо цi пiдходи
та методики до реальних фiнансових даних, будуємо оптимальнi портфелi за двома пiдходами,
порiвнюємо динамiку змiни дохiдностi, варiатичностi i показника ризику для цих оптимальних
портфелей мiж собою i з динамiкою рiвномiрного портфеля.

Завдяки запропонованим пiдходам iнвестор отримує iнструмент, який дозволяє йому приймати
рiшення щодо вибору пiдходу при побудовi оптимального портфеля, а також враховувати сингу-
лярнiсть коварiацiйної матрицi.

Ключовi слова: оптимiзацiя портфеля iнвестора, середньодисперсiйний аналiз, оптимальний
портфель Марковiца, вартiсна мiра ризику (VaR), мiнiмум-VaR-аналiз, псевдообернений метод
Мура—Пенроуза, оцiнка параметрiв.
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