VK 519.21

A. Burdym, Y. Danyliuk, N. Shchestyuk
DOI: 10.18523/2617-70808202546-55

PORTFOLIO OPTIMIZATION FOR REAL DATA:
APPROACHES AND CHALLENGES

Portfolio optimization continues to be a dynamic field within finance, integrating new theories and
technologies to better meet investor needs. As financial markets evolve, so too will the methodologies
used to optimize portfolios, making it an area ripe for ongoing research and innovation.

Classical Markowitz approach is based on the mean-variance optimization, which quantifies the trade-
off between risk (variance) and return (expected return). This approach had some limitations. It assumes
investors are rational, markets are efficient, and asset returns are normally distributed. As a response to
the some limitations of Markowitz theory minimum-VaR approach was appeared. This theory recognizes
some assymetry, that investors are more concerned about potential losses than gains and incorporates
downside risk measures like Value-at-Risk.

Despite advancements of the classical Markowitz theory and minimum VaR approach, challenges
remain in accurately estimating parameters, singularity of the covariance matrix and managing risks in
volatile markets.

In this paper we consider the mean-variance and mean-Var optimal portfolios and take into account
the case when the covariance estimated matrix is singular. We use the Moore-Penrose pseudoinverse
and Singular Value Decomposition (SVD) to find solutions. We apply these approaches and methodics to
real financial data, construct mean-variance and mean-Var optimal portfolios and compare the dynamics
of expected returns (mean), volatility and VaR for it.

Thanks to the proposed approaches, the investor gets a tool that allows him to make decisions about
choosing an approach to building an optimal portfolio, as well as taking into account the singularity of

the covariance matriz.

Keywords: portfolio optimization, mean-variance analysis, Markowitz optimal portfolio, value-at-
risk (VaR), min-VaR analysis, Moore-Penrose pseudoinverse, parameter estimation.

Introduction

Portfolio optimization is a critical area in fi-
nance that focuses on selecting the best mix of
assets to maximize returns while minimizing risk.
The history of portfolio optimization is rich and
has evolved significantly over the decades. The
idea of diversification dates back centuries, with
early investors recognizing that holding a vari-
ety of investments could reduce risk. The for-
malization of portfolio optimization began with
Harry Markowitz’s seminal paper "Portfolio Selec-
tion," published in 1952 [8]. Markowitz introduced
the concept of mean-variance optimization, which
quantifies the trade-off between risk (variance) and
return (expected return). Moreover, Markowitz
developed the concept of the efficient frontier, a
graphical representation of optimal portfolios that
offer the highest expected return for a given level
of risk.

However Markowitz theory had some limita-
tions. It assumes investors are rational and risk-
averse, markets are efficient, and asset returns
are normally distributed. Beside this, Markowitz
mean-variance optimization requires inverting the
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covariance matrix to find the optimal portfolio
weights. If the matrix is singular, there are either
infinitely many solutions or none, and the standard
approach fails.

As a response to the some limitations of
Markowitz theory minimum-VaR theory was ap-
peared |1],[2]. It incorporates downside risk mea-
sures like Value-at-Risk (VaR) and Conditional
Value-at-Risk (CVaR)[7], [10]. This theory recog-
nizes some assymetry, that investors are more con-
cerned about potential losses than gains, leading
to different optimization approaches [3]|. In [5] es-
timators, confidence regions, and test for minimum
VaR and CVaR optimal portfolios were considered.

Despite advancements of Markowitz and
minimum-VaR theories, the challenges remain in
accurately estimating parameters, managing risks
in volatile markets, and adapting to changing eco-
nomic conditions.

If the estimate covariance matrix is singular,
there are either infinitely many solutions or none,
and the standard approaches fail. In this case was
proposed use the Moore-Penrose pseudoinverse or
Singular Value Decomposition (SVD) to find solu-
tions [4]. These methods allow for a solution that
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minimizes the L2-norm (the sum of squared port-
folio weights), providing a unique and stable result
among the infinite possibilities [3].

In this paper we focus on the application of
mean-variance and min-Var optimal portfolios to
real data and take into account the case when
the covariance estimated matrix is singular. We
use the Moore-Penrose pseudoinverse and Singu-
lar Value Decomposition (SVD) to find solutions.
We apply this methodic to real financial data, con-
struct mean-variance and min-VaR optimal portfo-
lios and compare the dynamics of expected returns
(means), volatility and VaR for it.

The mean-variance and min-VaR optimal
portfolios: construction

The mean-variance portfolio. Let z; =
= (21¢,...,%kt)" be a vector of returns for k-
dimensional risky assets at time point t = 1,...,n.
We assume that xq,...,z, are independently and
identically normally distributed, with a mean vec-
tor p and covariance matrix 3. We also assume
that ¥ may be singular, with rank(X) =r, <n <
<k+1.

Furthermore, let w = (wy,...,wg) be a k-
dimensional vector of portfolio weights, where w;
represents the portion of wealth allocated to the
i-th asset and 1jw = 1, where 1; stands for the
k-dimensional vector of ones.

We denote the expected return and variance of
the portfolio by R = w'p and V = w'Xw, respec-
tively.

Following the classical mean-variance expected
utility (EU) approach introduced by Markowitz,
the optimal portfolio maximizes the trade-off be-
tween expected return and risk (measured as vari-
ance). The optimization problem is formulated as:
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where 7 > 0 is the risk-aversion parameter, which
reflects the investor’s tolerance to risk. A larger
value of 7 implies that the investor places more
weight on minimizing risk, while a smaller value
emphasizes return maximization. The closed-form
solution to the optimization problem is given
by:
-1
= Sy A )
k

where R is the projection matrix that orthogonal-
izes the return vector p with respect to the con-
straint 1}z = 1:

DIl P P Vs

R=%""-
].5271]_1C

(3)
and 1; is a k-dimensional vector of ones.

The optimal portfolios (EU) as proposed by
Markowitz’s theory lie on the upper part of
the parabola in the mean-variance space. This
parabola is known as the efficient frontier (EF)
and, if ¥ is positive definite, is given by

(R— Remv)? = s(V = Vawuv)

where
1.5y
= —— 4
and
T —— (5)
MV T sy

are the expected return and variance of the global
minimum variance portfolio (GMVP) given by
(see, e.g., [6]) with parameter

s = i Ry,

where R is defined by

Thus, for constructing the optimal portfolio fol-
lowing the classical mean-variance expected utility
(EU) approach introduced by Markowitz, we need
just to compute the weights by The expected
return (mean) R of the EU optimal portfolio one
can compute by [3] the variance is defined by V =
= w'Yw and X is positive definite.

The minimum-VaR portfolio. Markowitz
theory assumes investors are rational and risk-
averse, markets are efficient, and asset returns are
normally distributed.

Nevertheless real world admits some assymetry,
investors are more concerned about potential losses
than gains. In the papers |1} [2] were proposed
to use Value-at-Risk (VaR) as risk measures in
Markowitz’s optimization problem, instead of the
traditional variance.

VaR is defined as the potential loss of an in-
vestment portfolio at a given confidence level. This
measure is believed to provide a more accurate rep-
resentation of the risk in investor problem [11] and
portfolio management.

Formally, the value-at-risk of level a, 0 < @ < 1
is a probability functional, defined as a-quantile of
the profit (loss) function YV

VAR, (Y)=G Y a)=inf{ ye R: G(Y) > a},

where G is the distribution function of Y, G~ is
the quantile function of o, 0 < a < 1.
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It is worth to note that often it is recommended
(for examples by regulators Basel I and Basel II) to
denote VaR as the low quantile with minus sign:

VAR,L(Y) = -G (a)

For portfolio analysis we use the rate of return z,,
as the profit (loss) function Y. Then the VaR at
the confidence level a € (0.5,1) (VaR,,) is defined
as the rate of return z,, such that

P{z, < —VaRy,}=1—-a (6)

where

/
Ty = T W.

The optimization problem, as proposed by |1} 2],
can be stated as follows:

VaR, — min, subject to 1ljw=1. (7)

|1 2] have derived the exact expressions of its
weights and characteristics. In addition, they have
shown that the necessary and sufficient condition
for constructing the minimum VaR portfolio, i.e.,
for a solution to exist in (7)), is s < z2. Here, the
quantity z, = —®~1(1—«) denotes the a-quantile
of the standard normal distribution.

In the paper [5] were introduced and used alter-
native expressions of the weights and of the charac-
teristics of the minimum VaR portfolio in terms of
and . The weights of the portfolio obtained

in are given by wyag:

VVamv

Wy R = WGMV + 5 Ry, (8)
22 —s
where
E_llk
w = ——
GMV Ty,

The portfolio’s value-at-risk is My,r, with a
mean of Ry,r and variance of Vi,R:

Myar = /22 — sv/Vamv — Ramv.

% v Vamv,

22 —s

Ryar = wi,git = Romv +

Thus, for constructing the min-VaR optimal port-
folio we need to compute the weights wyar by [
The expected return (mean) Ry,g in this case one
can compute by |8 the variance is defined by V =
= w'Yw and X is positive definite.

The VaR evaluation. In this section we dis-
cuss in more details the problems of VaR estima-
tion.

For evaluating VaR there are some meth-
ods. VaR can be estimated either parametri-
cally (for example, variance-covariance VaR) or
non-parametrically (for examples, historical sim-
ulation VaR or resampled VaR). A McKinsey re-
port published in May 2012 estimated that 85%
of large banks were using historical simulation and
the other 15% used Monte Carlo methods. We
can notice, that in |13] we applied the Markowitz
technics to construct the optimal portfolio for real
data. Moreover, we apply Monte Carlo method to
compute VaR for constructed portfolios with some
assumption of their distribution. In [12], [14] we
evaluate VaR by parametric method as a-quantile
of the loss-profit function G with known parame-
ters. In this paper we focus on historical and non-
parametric methods.

Historical (non-parametric) method.
This is the most intuitive approach, relying solely
on historical return data without any distribu-
tional assumptions. The method involves the fol-
lowing steps:

e Sort the historical portfolio returns x,, in as-

cending order.

e Identify the quantile corresponding to the
loss level « € (0,1), which corresponds to
the confidence level (1 — «).

The VaR is defined by [6] and estimated as em-

pirical (1 — «)-quantile of the sorted sample x,.

Parametric (variance-covariance)
method. This method assumes that the returns
of the asset or portfolio are normally distributed.
Given the standard deviation o and the portfolio
value W, the VaR for a single period is calculated
as:

VaRy, = 2o -0 - W,

where z, = —®~!(1 — «) is the standard normal
quantile corresponding to the specified loss level a.

For a multi-period horizon of length ¢, the for-
mula becomes:

VaR(t) = 2o -0 - W - V1,

assuming the returns are independent and identi-
cally distributed across time.

Commonly used values of « include 0.1, 0.05,
and 0.01, which correspond to confidence levels of
90%, 95%, and 99%, respectively. The associated
quantiles z, are summarized below:

Confidence level Za
90% 1.282
95% 1.645
99% 2.326
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Ezxample 1. Let us estimate the VaR of a pre-
viously constructed portfolio using the parametric
method. Consider the following inputs:

0.05 0.01 0.02
¥=10.01 0.04 0.015],
0.02 0.015 0.03
0.15
w={0.10{,
0.12
a=09 W=1

Portfolio weights: [0.289, 0.289, 0.422]
First, we compute the portfolio variance:

o =+v0.02307 =~ 0.1519
Then, the 95% Value-at-Risk is calculated as:
VaRy g5 = 1.645 x 0.1519 ~ 0.250

Hence, with 95% confidence, the maximum ex-
pected portfolio loss over the period is approxi-
mately not more than 25% of the portfolio value.

Estimators: non-singular and singular cases

In practice ¥ is an unknown matrix and should
be estimated using historical values of asset re-
turns. Given a sample of n independent observa-
tions x1,...,x, of returns on k assets we calculate
the sample estimators of 4 — the mean vector and
3. — the covariance matrix, respectively by

é:% 5= nilé(mi_@(%—x)’.

T =

S|

Non-singular case. If the sample covariance
matrix S is non-singular, then the formulas for con-
structing mean-variance portfolio or minimal VaR
portfolio can be applied directly by replacing the
unknown population covariance matrix > with the
sample covariance matrix S.

Ezxample 2: Solving the Portfolio Optimization
Problem

Given the covariance matrix 3, expected re-
turns vector u, and risk aversion parameter 7:

0.05 0.01 0.02 0.15
S =001 004 0015, p=|01], 7=
0.02 0.015 0.03 0.12

The inverse of the covariance matrix is:

27.27 0 —18.18
»l= 0 30.77 —15.38
—18.18 —15.38 53.15

The first term of the solution:

s [
1Ty—-171 |
X 40 445
The second term:
0.0829
—Rup = | —0.0600
T —0.0222
Final portfolio weights:
0.289
x = [0.289
0.422

Python Implementation. The function
optimize_portfolio_by_Markowitz_2_test
takes the following parameters:

e mean_returns — vector of expected returns

e cov_matrix — covariance matrix

e T — risk aversion parameter 7

, cov_matrix=None, T=0):
cov_matrix. shape[@]))

first_term = (cov_matrix_inv @ ones) / divider

cov_matrix_inv @ ones, ones) @ cov_matrix_inv) / divider
(R @ mean_returns) / T

d_term
n': calculate volatility(result, cov_matrix)}

Figure 1. Function implementation of Markowitz
Model 2

The function uses numpy.linalg.solve to
compute the inverse, constructs a vector of ones,
and calculates the optimal weights according to the
extended Markowitz model.

Covariance matrix:
[[e.e5 o.01 .02 ]

[e.e1 0.04 0.015]
[e.02 0.015 0.83 ]]

Markowitz (T = 10):

oOptimal asset weights: [©.289, ©.289, ©.422]
volatility: @.1518771433319269

VaR (Parametric method): @.249816

Figure 2. Resulting optimal portfolio weights

This example demonstrates how to build an op-
timal portfolio that balances expected return and
risk using the extended Markowitz model.

Singular case. In practical applications,
the sample covariance matrix S may be singular.
When S is nonsingular, it is possible to use the
Moore-Penrose pseudoinverse instead of the regu-
lar matrix inverse [4; [9].

The Moore-Penrose pseudoinverse of a matrix
A € R™X" denoted by AT, is defined as the
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unique matrix that satisfies the following four con-
ditions:

AATA = A,
ATAAT = AT
(AAT)T = A4+,
(ATA)T = AT A

This matrix generalizes the concept of an inverse
to possibly singular or non-square matrices.

To compute the Moore-Penrose pseudoinverse
in practice, one typically uses the Singular Value
Decomposition (SVD). Given a matrix A of size
m X n, it can be decomposed as:

A=UxVT,

where U and V are orthogonal matrices, and X is a
diagonal matrix with non-negative singular values.
The pseudoinverse is then given by:

At =vytuT,

where X7 is obtained by taking the reciprocal of
the non-zero entries of ¥ and transposing the re-
sulting matrix.

Example 3.

In this example we would like to demonstrate
how to compute the inverted matrix by hands and
by Python. Consider the singular matrix:

=[5

Compute the determinant:

det(A) =3-(—-2)—6-(—1)
= —6+6=0
Since det(A) = 0, matrix A is singular and can-

not be inverted classically.
SVD decomposition:

A=UxvT
Singular values:

g1 = \/50,

0’2:0

Transpose of U:

o _ [—0.9487

—0.3162

0.3162
—0.9487

Intermediate multiplication:

o VETO 0] [—0.9487 0.3162

0 0] |-0.3162 —0.9487} { 0

Final multiplication:

At — —0.4472 —-0.8944| | —0.1341 0.0447| _ |0.06
T 1—0.8944  0.4472 0 0 ~10.12
Final result:

At — 0.06 —0.02
0.12 —-0.04

Now, consider the same example using a
Python implementation and verify the result.
We use the same matrix:

3 6
=Y
To verify the manual result, we compute the
pseudoinverse using Python.

Determinant:
det(A4) = 0.0
Using np.linalg.pinv:
At — 0.06 —0.02
0.12 -0.04
Using np.linalg.svd and manual reconstruc-
tion:
At — 0.06 —0.02
0.12 —-0.04|"

To construct mean-variance optimal portfolio
in the case of a singular sample covariance matrix
S, the portfolio weights under the expected utility
criterion are estimated using;:

~+ S+1k

— -1R+%
Wr,=———+4+a R™X
U178+, ’

where e iTes
ﬁ+ — St _ m
1,/ S*1,
Similarly, the Global Minimum Variance

(GMYV) portfolio estimators in the singular case
are obtained as:

V50 0 L0 gr = ST

Z:[o 0]’ E+:{¢§70 0] SR PICES T

Uiy = o

Matrices U and V: GMV 1;5*1;€
St1y

_ [-0.9487 —0.3162 _[-0.4472 —0.8944 Wy = o

U= {0.3162 —0.9487} V= {—0.8944 0.4472 ] 1,571k

—0.1341 0.0447]
0

—0.02
—0.04

|
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To construct the Value-at-Risk (VaR) efficient
portfolio in the singular case we compute the port-
folio weights in the form:

/\+ —
Wyar = Womy + PR z-
where
A St1,1] 8+
gt=1"Rtz, and Rt =5t -2 Kk
175+1y,

Then, for singular case the portfolio’s value-at-risk,
the estimated VaR-efficient return and variance are
given by:

A/ =y
My, =22 — 58T

s e
: VJMV
— ’
22 — &t

ot
o+ Vamv-

ot At
Vamv — Réwvs
At _ Pt
Ry,r = RGuy +

o+
VVaR -

22 —
Ezxample 4. In this example we would like to
demonstrate how to construct Marcowitz portfo-
lio in the singular case by hands and by Python.
Now we consider an example of Markowitz port-
folio optimization with an investor risk aversion
coefficient 7 = 4000. This case illustrates a sin-
gularity scenario since the covariance matrix has a
zero determinant. The Singular Value Decomposi-
tion (SVD) algorithm is demonstrated along with
step-by-step calculations.

2 = 0.08, 7 = 4000

2 4
==[
To compute the Moore—Penrose pseudoinverse
of X, we proceed as follows:

r [2 42 11 _[20 10
EZ_[1242_105

H1 = 0.1,

. L -5 10].
(% —25I)u—0:>[10 _gp| @ =0=
12
U1 \/5 1
T oper 20 10] .
(=2 Ol)u—0:>{10 5 | @2 0=
1[4
U2—75 9
2 =1
VARV

1 5 1 (1
— T [ —_— —
nTEr Ty 5[10}_ 5[2}’
1 [-2
1]2—75 1
1 =2
vl 3]
VARV
1
0
VZ+:[5§/5 O}
5v5
2 1
e
VIRV

2 1
vt =vytu?T = {245 225}
25 25
Next, we calculate the optimal portfolio using
this pseudoinverse:

0.08 0.04 0.1 1
+ — —
X = [0.16 0.08] » M [0.08} > k= H

0.12

¥ = [0.24

} , 1,2%1;, =0.36

S [y
15+1, |3

Sy = [0.012} L1
- ~ 100240 27
det |20 =2 10 90\ (5-A)=100 = A2—25) = 0 TS
10 5—A -6
Lo, [15x10
8000~ M7 | 3x10°
A = 257 Ao = O7 = 5, =0
L 2 o1 o9 S é L[5 1061 _ [0.3330015
v = |1 3% 1076 | = | 0.666003

_® 0 +_[5 0
i [

For the eigenvectors of XX, we have:

Now we replicate the same example using a
Python program to verify the correctness of the
manual computations. The result is a vector =
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representing the optimal asset weights that simul-

taneously account for risk minimization, expected

return, and the investor’s risk aversion. For clar-

ity, the program also prints auxiliary results such

as the pseudoinverse matrix 7, individual com-

ponents (), 2 and the final portfolio weights.
We use the same input:

w1 =01, py=0.08 7=4000, X = E ;L}

The output of the Python implementation is:

det(X) = 0.0

s+ _ [0-08 0.04]
~ [0.16 0.08]

Minimum variance component =

[0.33333333
1066666667 | °

1-1077
2.1077

Risk-adjusted return component = [

0.33333343
0.66666687

Optimal portfolio weights = [

These results confirm the accuracy of both the
manual and programmatic approaches to portfolio
optimization in the presence of a singular covari-
ance matrix.

Illustration for the Real Financial Data

Markowitz Portfolio. The data for analysis
was obtained from the Yahoo Finance API using
the Python library yfinance. For each asset, his-
torical daily closing prices were downloaded for the
period from November 30, 2022 to November 30,
2023.

The portfolio consists of five assets:

Amazon (AMZN) - Technology
Mastercard (MA) - Finance
Netflix (NFLX) - Entertainment
Uber (UBER) - Transport
Adobe (ADBE) - Software

Two values of the 7 parameter were selected for
the study:

e 7 = 20 — aggressive strategy focusing on

maximizing return

e 7 = 100 — conservative strategy aiming at
minimizing risk

B
2 s

Parameter Value
Optimal weights

AMZN 23.2%
MA 2.3%
NFLX 43.9%
UBER 10.0%
ADBE 20.6%
Portfolio volatility 0.01292

Return distribution

Not normal

VaR (95%)
Parametric 0.336805
Historical 0.020637

Parameter Value
Optimal weights

AMZN 5.5%
MA 4.0%
NFLX 78.7%
UBER 5.7%
ADBE 6.1%
Portfolio volatility 0.01118

Return distribution

Not normal

VaR (95%)
Parametric 0.291376
Historical 0.017616

Portfolio Value Over Time

Table 1. Portfolio characteristics for 7 = 20

Table 2. Portfolio characteristics for 7 = 100

‘n ‘/’\\f‘ N W/V\W
/ = MWV J\/
I

I
o
o
®

portfolio with 7 = 20 and 7 = 100

Portfolio Volatility (window = 30 days)

>
%

Figure 3. Portfolio wealth dynamics for Markowitz

portfolio with 7 = 20 and 7 = 100

Figure 4. Parametric VaR dynamics for Markowitz
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Historical VaR (window = 30 days)

— Markowitz:2 (T=20)
— Markowitz-2 (T=100)

0.025

Figure 5. Historical VaR dynamics for Markowitz
portfolio with 7 = 20 and 7 = 100

Parametric VaR (window = 30 days)

0.026

Figure 6. Portfolio wealth dynamics for Markowitz
portfolio with 7 = 20 and 7 = 100

Our analysis highlights how varying the 7 pa-
rameter impacts portfolio behavior. With 7 = 20,
the portfolio remains diversified—43.9% in NFLX,
23.2% in AMZN, and 20.6% in ADBE. A shift to
a conservative 7 = 100 results in a highly con-
centrated allocation (78.7% in NFLX) and reduces
volatility by 13.5%.

This is confirmed by declines in both paramet-
ric VaR (from 0.337 to 0.291) and historical VaR
(from 0.021 to 0.018), indicating lower risk. Given
the non-normal return distribution, historical VaR
proves more reliable.

Overall, the analysis shows how adjusting 7 bal-
ances concentration and risk, linking theoretical
models to real market dynamics. The findings un-
derscore the importance of strategy calibration for
achieving targeted risk-return profiles.

Minimum VaR portfolio. The data for this
analysis was obtained using the same methodology
as in the previous example, sourced from the Ya-
hoo Finance API via the yfinance Python library.
The portfolio comprises the same five assets: Ama-
zon (AMZN), Mastercard (MA), Netflix (NFLX),
Uber (UBER), and Adobe (ADBE), with histor-
ical daily closing prices covering the period from
November 30, 2022, to November 30, 2023.

The optimal weights for the Minimum VaR
Portfolio were calculated to minimize the Value-
at-Risk (VaR). The resulting allocation is:

Parameter Value
Optimal weights

AMZN 25.59%
MA 0.14%
NFLX 42.56%
UBER 31.71%
ADBE 0.00%
Portfolio volatility 0.01379
Return distribution | Not normal
VaR (95%)

Parametric 0.359239
Historical 0.019444

Table 3. Key characteristics of the VaR-min portfolio.

Portfolio Value Over Time

— vaRmin portfolio

Date

Figure 7. Portfolio wealth dynamics for the
min-VaR portfolio.

Portfolio Volatility (window=30 days)

— vaRemin Portfolio

0013

0012

Volatity

0010

0009

Figure 8. Portfolio volatility dynamics for the
min-VaR portfolio.

VaRemin Portfolio: Combined VaR (window=30 days)

uuuuu

Figure 9. Historical and parametric VaR dynamics
for the min-VaR portfolio.

The analysis demonstrates that the minimum
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VaR portfolio is predominantly allocated to Net-
flix (NFLX) and Uber (UBER), with only marginal
exposure to Mastercard (MA) and Adobe (ADBE).
This allocation pattern reflects the optimiza-
tion objective of minimizing Value-at-Risk (VaR),
which naturally favors assets that have shown
greater stability during adverse market conditions.

Compared to the conservative Markowitz port-
folio (7 = 100), the VaR-min portfolio exhibits
slightly higher volatility. However, it achieves
marginally lower historical VaR, highlighting its
superior resilience during periods of market stress.
Given the non-normal nature of return distribu-
tions, historical VaR emerges as a more reliable in-
dicator of downside risk than the parametric mea-
sure.

Conclusion and discussion

In the paper two approaches to portfolio opti-
mization were considered: the mean-variance and
min-VaR technics. We apply these approaches to
real financial data.

Firstly we estimate the parameters and take
into account the case when the covariance esti-
mated matrix is singular. We use the Moore-
Penrose pseudoinverse and Singular Value Decom-
position (SVD) to find solutions and demonstrate
this in terms of some example.

After that we construct mean-variance and
min-VaR optimal portfolios and compare the dy-
namics of portfolio wealth (means), volatility and
Value-ar-risk for it.

The analysis provided in Python demonstrates
some interesting facts. For Marcowitz portfolio we
see how adjusting 7 balances concentration and
risk, linking theoretical models to real market dy-

namics. The findings underscore the importance
of strategy calibration for achieving targeted risk-
return profiles.

Minimum VaR allocation pattern reflects the
optimization objective of minimizing Value-at-
Risk (VaR), which naturally favors assets that have
shown greater stability during adverse market con-
ditions.

The time dynamics of portfolio mean and VaR
confirm the effectiveness of min-VaR strategy in
balancing risk and return. By prioritizing VaR
minimization over traditional mean-variance ob-
jectives, the resulting portfolio provides a distinct
and practical alternative framework for portfolio
construction.

This min-VaR approach underscores the value
of targeted optimization in modern portfolio the-
ory: by explicitly focusing on risk protection, in-
vestors can achieve portfolios that are not only the-
oretically sound but also better aligned with real-
world risk management objectives.

Theoretical researches (see for example [1]| )
show that the min-VaR optimization problem is
equivalent to Markowitz’s optimization problem if
the returns on assets are multivariate normally dis-
tributed. As a result, all optimal portfolios ob-
tained by solving are lying on the EF, the set of
optimal portfolios resulting from Markowitz’s ap-
proach. The returns on real assets are not mostly
multivariate normally distributed. It is a reason
why the min-VaR and mean-variance portfolios
demonstrate differebt behavour for real data.

Thanks to the analysis to proposed approaches,
the investor gets a tool that allows him to make de-
cisions about choosing an approach to building an
optimal portfolio, as well as taking into account
the singularity of the covariance matrix.
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ITIOPTOEJIBHA OIITUMI3AIIA /14 PEAJIBHUX
JAHUX: IIIJIXOAN TA BUKJIMKN

Teopist moprdenpHOl onTUMi3aIil TPOIOBKY€E OyTH AMHAMIYHOIO Tajay33i0 y diHaHncax, iHTerpyodn
HOBI Teopil Ta MmiIXoan [IJTsi KPAIOro 3aI0BOJIeHHsT TOTped iHBeCTOPiB. 3 po3BUTKOM (hiHAHCOBUX PUHKIB
PO3BUBATUMYTLCS I HOBI TiIXOaM Jjisi ONTHMI3aIll moprdeltis, mo podUTH Iel HAIPAM CIPUATIABIM
JIJTsT TIOSIBU HOBUX JIOCJII?KE€Hb Ta 1HHOBAIIiil.

Kracuannit migxin Mapkosina 6a3yerbes Ha onTuMizanil MyHKIHT, sKa KUIBKICHO BU3HAYAE KOMITPO-
Mmic MixK pusukoM (aucrepciero) Ta odikyBaHo jgoxigmicTio. [Ipore el migxin mMae jgeski oOMeKeHHs.
30KkpeMa, BiH MPHUILYCKAE, 10 IHBECTOPU PAIIOHAJIbHI, IXHE CTABJIEHHS 10 PU3UKY PETYJIIOETHCS JIEeSTKIM
rmapamMeTpoM, pUHKN eeKTUBHI, a JOXiIHICTh aKTUBIB PO3MO/ILICHA HOPMAaJabHO. Y BiMOBi b Ha 0OMe-
KeHnHst Teopil Mapkosina 3’sBUBCS iHINN MMi/IXiJT, 0 BU3HAE MEBHY acCUMETpilo, TOOTO iHBecTOpm OiTb-
me crypboBaHi moTeHIIHNMY 30uTKaMu, HixkK npubyTkamu. Lleit minxin 6asyerbes Ha MiHIMIZaIl Tak
3BaHOIO TOKA3HUKa BejuunHu pusnky Value-at-Risk. Hesparkaroum Ha mocsarHeHHsT KIacuaHOI TEOPil
Mapkosina Ta migxomy miximizanii VaR-nokasnnka, 3auImaoTbcs BUKJINKH, OB’ sg3aHl 3 mpobieMamMu
OIIHKU ITapaMeTPiB, MOXKJIUBICTIO ITOABYU CUHTYJISIPHOI OIIHOYHOI KOBaPiaIiitHOl MATPHIIl Ta yIIPABJIiHHAM
PU3WKAMK Ha BOJATUJILHUX PUHKAX.

V wmiit cTaTTi ME PO3TJISIIAEMO IIOOYIOBY ONTUMAJIBLHUX HOPTMEB K 3a miaxomsoMm Mapkosina, Tak
1 3a MiHIMI3aIli€l0 MOKA3HUKA BEJMYUHU PU3UKY, & TAaKOXK BPAXOBYEMO BHNJIOK, KOJW KOBapialiiina
OIIHOYHA MATPUIlS € CUHTYJIAPHOI0. Mu BukopuctoByeMmo ncesmoobepuennii meron Mypa—Ilenpoysa ta
PO3KJIaJaHHs 3a CHHIYJIspHUM 3HadeHHAM (SVD) mia momyky pimens. Mu 3acrocoByeMo 1 mmijxozmu
Ta METOJUKU JI0 PeaibHUX (PIHAHCOBUX JAHUX, OYIYEMO ONTUMAJbHI MOpTdei 3a IBOMa, MiIX0TaMH,
MOPIBHIOEMO JMHAMIKY 3MiHU JOXiTHOCTi, BapiaTMYHOCTI i MOKA3HUKA PU3UKY JJIS ITUX ONTUMAJILHUX
noprdesieit Mik CODOI0 1 3 TMHAMIKOIO PIBHOMIPDHOTO OPTQEIs.

3aBAgKN 3aIIPOITOHOBAHUM ITiIXOaM IHBECTOD OTPUMYE IHCTPYMEHT, sIKUil T03BOJIsiE€ HOMY IIpUiiMaTh
pillleHHs 100 BUOOPY MiAX0/Iy IPHU HOOYAOBI ONTHMAIBLHOTO HOPT(dEs, & TAKOXK BPAXOBYBATU CHUHIY-
JISPHICTH KOBapiaIiitHOl MaTpHIILi.

Kutto4uoBi ciioBa: onrumizaris noprdess iHBecTOpa, cepeIHbOINCIEPCIHII aHaIi3, ONTUMAJIbHAI
noprdens Mapkosina, Bapricaa mipa pusuky (VaR), minimym-VaR-anasis, mncesmoobeprenuii mMeTos
Mypa—TIlenpoy3a, orinka mapameTpis.
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