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LAST TIME MOMENT OPTIMALITY IN UNIFORM
1-BULLET SILENT DUEL WITH SCALED
EXPONENTIALLY-CONVEX ACCURACY

The uniform 1-bullet silent duel with scaled exponentially-convex accuracy of payoffs is a symmetric
matriz game whose optimal value is 0, and each of the duelists has the same optimal behavior, whether
it 1s in pure or mized strategies. Such duels model two-side competitive interaction, where the purpose
is to gain a reward by making the best possible decision through quantized time. It is proved that the
last time moment is optimal in the duel with N time moments only when the accuracy factor does not
e—eN=T
e %:i -1
last time moment is single optimal. If the accuracy factor is exactly equal to the marginal value, the
duelist has two optimal time moments: the penultimate and last one. The conditions of the last time
moment optimality can be set to force the duelist to act the latest possible, which is quite useful in
some blockchain settings, where participants (e. g., validators or miners) choose when to attempt block

proposal or transaction insertion under uncertainty.

exceed marginal value If the accuracy factor is dropped below this marginal value, then the
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Uniform 1-bullet silent duels

The uniform 1-bullet silent duel is a timing
game [1], [2]

(XN, Yy, Un) =
= (fable il Uy  O)

of two players (duelists) whose pure strategy sets
are denoted by

Xy ={z:}Y, = {]@__11 }: — Ty =
— (1), = {fv‘_ll}N_ SRR

and payoff matrix Uy is skew-symmetric [3], [4]:

Uy = [ijlyen = [“tjilyen = _U%' (4)

Uniform 1-bullet silent duels model two-side com-
petitive interaction, where the purpose is to gain
a reward by making the best possible decision
through quantized time [2], [4]. This time is set
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Ty in (2), (3), consisting of N successive time mo-
ments {tq};\[:1 of possible shooting [1] and repre-
senting the standardized time span [0; 1] upon its
equidistant (uniform) quantization with a step of
ﬁ. Thus, the duelist is allowed to legitimately
shoot only at one of the time moments in set Ty,
where number N determines the duel size. Shoot-
ing the bullet is a metaphor of making a single
decision, where the duelist benefits from shooting
as late as possible but only by shooting first [2],

3], [5]-
Optimal time moment existence

Uniform 1-bullet silent duel (1) by (2) — (4), be-
ing a finite zero-sum game, always has a solution at
least in mixed strategies [2], [3]. Besides, the duel
is symmetric, and thus its optimal game value is 0,
and each of the duelists has the same set of opti-
mal strategies, which can be both pure and mixed
[1], [6]. However, due to finite 1-bullet silent duels
are commonly used to model non-repeatable inter-
action processes, the main goal is to determine all
optimal time moments (optimal pure strategies)
for the duelist to shoot [1], [7]. If there are no op-
timal time moments at the duelist, i.e. duel (1) is
not solved in pure strategies (but, certainly, it is
solved in mixed strategies), the duel configuration
is forcedly modified through changing the struc-
ture of payoff matrix Uy in order to come up with
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a pure-strategy optimal behavior for the duelist [1].

Owing to the skew-symmetry of matrix (4),
whose main diagonal is of N zeros, any saddle
point of matrix (4) is a zero entry in a nonneg-
ative row and a nonpositive column [3]. Thus, if
row i* of matrix (4) by * € {1, N} is nonneg-
ative, then row ¢* contains a saddle point on the
main diagonal [4] and time moment ¢;~ is optimal.
A symmetric reasoning is true for columns: if col-
umn i* of matrix (4) by i* € {1, N} is nonposi-
tive, then column ¢* contains a saddle point on the
main diagonal [2] and time moment ¢;+ is optimal.
So, it is conventionally possible to conclude on op-
timal time moment existence by studying only ei-
ther nonnegative rows or nonpositive columns of
payoff matrix (4).

If row ¢* contains a negative entry, time mo-
ment t;+ is not optimal. At that, column ¢* con-
tains the positive entry. If row ¢* contains only
positive entries, except for the main diagonal en-
try u;«;+ = 0, then there is the single optimal time
moment ¢;« in this duel [4], [8].

Scaled payoff exponential rate

Duel (1) by (2) — (4) is configured by the struc-
ture of payoff matrix (4), which is determined by
how its entries are calculated. In general,

uij = ag (z:) — ag (y;) +
+a?g (w;) g (y;) sign (y; — i)
for i=1, N and j=1, N (5)
by some discrete accuracy functions g (z;) and
g (y;) of the first and second duelists, respectively,
scaled with an accuracy factor a > 0, where
g9(z1) =g(y1) =g(0) =0 and
gan)=g(yn)=9g1) =1 (6)
Commonly, these functions are nondecreasing. As
rewards increase with time, and the increment is
rather nonlinear than linear, it is appropriate to
consider exponentially-increasing accuracy func-
tions. So, instead of (5), entry u;; of payoff matrix
(4) is calculated as
uij = ag (e*) —ag () +
+a’g (™) g (e¥) sign (y; — ;)
for i=1, N and j=1, N (7

by still obeying requirements similar to (6):

g(e)=g(e")=g(’) =¢(1) =0 and
ge™)=g(e™)=g(e')=g(e)=1. (8)

Seemingly, accuracy factor a just scales the reward,
but its genuine impact will be ascertained below.

Assume that an exponentially-increasing accu-
racy function of the duelist is

ge®)=ae*+8 by acR\{0}, BeR. (9)

As function (9) of variable z must obey require-
ments (8), then

9(") =g()=a+p=0,

g(e') =gle)=ae+p=1,

whence
B=—a=1-ae,
ale—1)=1,
and ) 1
- = . 1
1 PET (10)

Upon plugging (10) into (9) function g (e*) be-
comes an exponentially-convex-accuracy function:

e? 1 e? —1

g(e7) = Te—1 e—1°

(11)

Then, upon plugging (11) into (7), entry w;; of
payoff matrix (4) is calculated as

e —1 e¥i —1
Uis = Q- —a-
7 e—1 e—1
e —1 e¥% -1 |
+a? - pu p— -sign (y; — x;) =
6Ii_eyj
- e—1 +
et —1)(e¥ —-1)
+a2-( ) 5 )~81gn(yj—xi)
(e—=1)

for i=1, N and j=1, N. (12)

Hence, the general goal is to determine optimal
time moments for the duelist in uniform 1-bullet
silent duel (1) by (2)—(4) and (12). In this pa-
per, the particular goal is to determine whether
and when the last time moment ty = 1 is op-
timal in such a duel. The conditions of the last
time moment optimality can be set to force the
duelist to act the latest possible, which is quite
useful in some blockchain settings, where partic-
ipants (e.g., validators or miners) choose when
to attempt block proposal or transaction insertion
under uncertainty [9], [10]. It is quite noteworthy
that

1—e¥ o (1—=1)(e¥% —1)
U = a- +a” - =
Y e—1 (e—l)2
1 — e¥
—a- -~ <0Vj=2 N
e—1

and thus the starting moment ¢; = 0 is never op-
timal in such a duel, regardless of the number of
time moments and the scaled payoff exponential
rate (determined by accuracy factor a).
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The most trivial duel

Obviously, it is the best to get started with
the most trivial duel, whose size is the smallest.

Theorem 1. In the most trivial uniform 1-bullet
silent duel (1) by (2) —(4) and exponentially-
convezx-accuracy payoffs (12), where N = 3 and

(X3, Y3, Us) =
/Lo !
- b 2’

1
1 — 1
}7 {07 27 }7U3>7

the duelist has the single optimal time moment

tgzéby
e— e

(13)

In such a duel, the duelist has the fewest possible
number of time moments to shoot. The triviality,
nevertheless, does influence the optimal behavior
of duelists via accuracy factor a.

the duelist has the single optimal time moment

t3=1by
aE(O;

and the duelist has two optimal time moments to =
= % and t3 =1 by

o ﬁ) , (15)

Ve—1

IS

e-ve 14 = 16
o> S0 (14) a= 771 (16)
Proof. For N = 3 the entries of the respective pay- :a.l_e:—a_—ugl <0, (18)
off matrix (4) are: e—1
1
b @ e ()
Ulg = a- a 3 = u :a.e € +a2. =
—1 (e—1) 23 e—1 (e—1)°
_ l_ﬁ:—u21<0, (17) _ '\/E—e 2'\/5_1_
e—1 - ta -
e—1 e—1
= \/E(1+CL) _ (€+a) = —U32. (19)
e, (=) () !
Uiy =0 —— +a - (e— 1) - Hence, with (17) — (19) matrix (4) here is
1_
0 a - \{é —a
e _
1- lta)—
Us = [us)ys = | a 1_\£E 0 a-\/a( +eail(e+a) (20)
1 —
. a-\/é( +1a)_e(e+a) 0

The second time moment is single optimal if
the second row of matrix (20) is positive, except
for uge = 0. Having ug; > 0 by inequality (17), it
is so when

Ve(l+a)—(e+a)

> 0.
e—1

(21)

U223 = a -

As e > 1, inequality (21) is equivalent to inequality
Ve(l+a)>e+a,

whence
Ve—e>a—ave

and inequality (14) emerges. The third time mo-
ment is single optimal if the third row of matrix
(20) is positive, except for ugs = 0. Having uz; =

=a > 0, it is so when

Ve(l+a) = (e +a)
1—e

Uz = a- > 0,

which is equivalent to inequality
Ve(l+a)<e+a,

whence condition (15) emerges. When ugg = 0,
then
Ve(l+a)=e+a,

and condition (16) emerges, by which
Ugg = Ugg = Uzz = uzz =0

and thus time moments to = % and t3 = 1 becomes
optimal. O
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So, it is quite clear that accuracy factor a def-
initely influences the optimal strategy of the du-
elist, although the impact is not that big. Indeed,
in the smallest duel, when the duelist is allowed
to shoot at only three time moments, the opti-
mal choice is between the duel span middle (second
moment) and the duel end (third moment). Set-
ting the accuracy factor to irrational value (16) is
hardly possible in practice (inasmuch as, e.g., fi-
nite precision of numerical representation is only

Theorem 2. In uniform 1-bullet silent duel (1) by
(2) —(4) and exponentially-convex-accuracy pay-
offs (12), the duel end time moment ty = 1 is
single optimal if only

-

enN-

e — eN=1
—1
Proof. The duel end moment is single optimal if
only the last row of matrix (4) is positive except
for entry uyy = 0:

eTN _— eYi
UNG =T
TN _ ] ¥i —1
Gl G
(e—1)

Vy <azy=1by j=1, N—1. (24)

At n € {2, N}, function wu,; is decreasing with
respect to index j = 1, n — 1: indeed, e*" > 1,
e¥% > 1, and thus value

etn — eYi
unj:ae—ili
2 (e —1) (¥ — 1)
—a“ - =
(e—1)
e’r —1 9 (1 e =1\ e¥% —1
=q - —a“ - 7+ .
e—1 a e—1 e—1

is a negatively-sloped line with respect to exponent
e¥s. Therefore, function uy; is decreasing with re-
spect to index j = 1, N — 1, and inequality (24) is
equivalent to inequality
ewN _ equ
UNN-1 =0 ——————

e—1
I G —(i)_(ef;l Y.y (25)

possible in practical computations), so the two-
moment optimality is unlikely.

Optimal time moments in bigger duels

In bigger duels, first consider optimality of the
duel end time moment. It is as more convenient,
as well as is going to lighten the proof of optimality
of preceding time moments (including the penulti-
mate one).

At

by NeN\{1, 2}  (23)

N-—2
eN-1 —1]

the duelist has two optimal time moments: penulti-
mate moment tn_1 = % and end moment ty =

=1

Inequality (25) is simplified to

e —e¥N-1 e—1)(e¥v-1 -1
UN,N-1 = fa~( )( 5 ):
e—1 (e—1)
_e—eVN1 g (et —1)
e—1 e—1
—eYNn-1.(1
_e—e ( +a)+a>0 (26)
e—1
whence
N-—2
e—ev-1-(14+a)+a>0,
N—-2 N-—2
a (eNfl 71) <e—eN-1,
N-—2
— N-—-1
a< (27)
eN-1 —1

Inequality (27) means that the end moment ¢ty = 1
is single optimal by (22).

If (23) is true, then it follows from (24) — (27)
that

UNN—1 = UNN = UN—1,N = Un—1,N—1 =0, (28)

and still the end moment ¢ = 1 is optimal. The
penultimate moment ty_; = =2 is optimal if
un—1,N—2 = 0 due to function uy_1; is decreas-
ing with respect to index j =1, N — 2. So,

eTN-1 _ oYN-2 9 (el’N—l _ ]_) (enyz _ ]_)
UN—-1,N-2 = Q" . 3 =
e—1 (e—1)
N-2 N-—2 N-3 N-2 N2 £=3
e —eN-1 eN-1 — eN-1 e —eN-1 <6N71 _]-) (6N71 _]-)
= "Nz N ' 5 =
eN-1 — ] e—1 eN-1 — 1 (671)
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e eNt (e%:?—e%:?)(e—l)—(e—e%:%>(e%:f—1>
N e% —1 (8—1)2 B
N-—-2 N-—-2 N-—-3 N-—2 N-3 N-—-3 N-—2 N — N—-2
e —eN-1 e-eN-1 —geg.egN-1 —egN-1 _|_ N-1 —eg.eN-1 +eN—1 eN-1 +e_eN—1
= ~N_3 3 =
eN"T — 1] (e—1
N— N-—2 N-—2 —3 N—-2 N-3 N-3
. e —eN-1 e-eN-1 _2€N—1 J’_eN—l +eN—1 .eN-1 +e_2e eN-1 .
e%:f _1 (6-1)2
N—2 N—-2 N—-2 N-3 N-—2 2
e eN—1 e-eN-1 —2eN-1 ;- egN-1 . (1_|_6N—1 4 eN-1 —26)
N e%:? —1 (6—1)2 B
N-—-2 1 1 N-—-2 2
N-3 e—eN-1 e-eN-T —2eN-T 4 1+eN-T 4eN-T —2¢
—=eN-1. —— . 5 . (29)
eN—-1 —1 (e—1)
Clearly, is
e—e%j>0 and e%:?—1>07 %i%@l(N):A}iinoowl(N):
. 1 N-2
so the last term in (29) is nonnegative if = ]\}E}noo (6 ceN-T eN-T — 26) =
1 1 N-—2 2 :6-604*61726:0
e eN-T —2eN-T414eN-1T4eN-T—2¢>0. (30)
. . . . and this minimum is not reached. So,
The left side of inequality (30) can be written as
. p1(N)>0 VN > 2. (33)

e-eN-1 726ﬁ +1+
N-—2 2

+eN-1T 4 eN-T —2e =

where

(pl(N):e-elel eVt — 2 (31)
and

@3 (N) =1+ VT — 27T, (32)

The first derivative of function (31) is

.

__eem
(N -1

2

eN:l

so (31) is a decreasing function. Its minimal value

The first derivative of function (32) is

dpa QeI 2eN-T
aN T N1 2
(N —1) (N —-1)
2eN-T )
:672~(1—eN—1) <0 VN>2
(N-1)

1
as eN-1 > 1, so (32) is a decreasing function. Its
minimal value is

w2 (V) = iy e () =

= lim
N—o00

=14+e2-2"=0

(1“1‘6% _2eﬁ) =

and this minimum is not reached. So,

w2 (N)>0 VN > 2. (34)
Therefore, due to (33) and (34), inequality (30)
holds even strictly. This means that uy_1 ny—2 >
> 0 and thus the last two rows of matrix (4) are
positive except for entries (28), whence the penul-
timate moment ty_; = £=2 is optimal by (23)
along with the end moment ¢ = 1, and there are
no other optimal time moments at the duelist. [J
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It is worth noting that Theorem 2 includes
Theorem 1. A corollary from Theorem 2 is that
if the accuracy factor scaling the reward exceeds
marginal value (23), then shooting at the very end
of the duel is not optimal.

Conclusion

The last time moment is optimal in uni-
form 1-bullet silent duel (1) by (2)—(4) and

exponentially-convex-accuracy payoffs (12) only
when the accuracy factor does not exceed marginal
value (23). If the accuracy factor is dropped below
marginal value (23), then the last time moment is
single optimal. If the accuracy factor is exactly
equal to marginal value (23), the duelist has two
optimal time moments: the penultimate and last
one. In future work, it would be worth-while to de-
termine whether preceding time moments are op-
timal in such duels.
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OIITUMAJIBHICTh OCTAHHBOI'O MOMEHTY YACY B

PIBHOMIPHII O/THOKYJIBOBIN BE3ITYMHIU JIVEJII 3

MACIIITABOBAHOIO EKCITIOHEHIIIAJIBHO-OITYKJIOIO
BJIYYHICTIO

PiBHoMmipHa OfHOKYIROBA GE3MIYMHA JIyeIb 3 MacHITabOBAHOIO E€KCIIOHEHI[AJIbHO-OIIYKJIOK BIIYYHi-
CTIO BUTDAIIIB € CUMETPUIHOI MATPUYHOK T'POI0, 9M€ ONTHMAJbHE 3HaYeHHs JO0piBHIOE 0, a KOXKEH 3
IyeJSHTIB Ma€ OMHAKOBY ONTHUMAJIbHY IIOBEIHKY, Xail BOHA y 4ncTUX a0 y 3MimaHux crparerisx. Ta-
Ki Jyesii MOJE/IIOI0Th JIBOCTOPOHHIO 3MAarajbHUIBKY B3a€MOJIIO, /i€ METOIO € 37[00yTTs BHHAIOPOIH 3a
SIKOMOTI'a, KPAIIIOTO PillleHHsI Y KBaHTOBaHOMY daci. JloBejieHOo, 0 OCTaHHI MOMEHT Yacy € OINTHMAaJlb-
HUM y JIyeJti 3NN MOMEHTAMY Yacy JIMIIE TOJi, KOJIM KOeMIIiEHT BJIyYHOCTI He IIePEBUIILYE TPAHUIHOIO

—2

eE—e

_eN—1 .. . e
3HadeHHs SRF5s—. Ko KoedillieHT BIYIHOCTI A a€ HUKYIE MO0 TPAHUIHOTO 3HAYEHHS, OCTAHHI

N-—-1 _
MOMEHT qaecy € €£I/IHI/IM onTUMabHUM. ZKINO KOeIIiEHT BJIyYHOCTI TOYHO PIBHUI IIBOMY I'DAHUIHOMY
3HAYEHHIO, JIyeJITHT MA€ J[Ba, ONTHUMAJIbHI MOMEHTH Jacy: IepeIOCTAHHIN Ta OCTaHHIi. Y MOBH OIITAMAJIb-
HOCTI OCTAHHBOT'O MOMEHTY JaCy MOXKYTb HAKJIAJIATHC JJIs TOTO, 00 3MYCUTH IyeJISHTA JIATH SKOMOTa
misHiie, Mo € J0CTaTHLO KOPUCHUM Y JIeAKUX HAJAIITYBAHHSIX OJIOKYENHy, e yIacHUKU (HAIPHUKJIaJL,
BasiaTopu abo MaiiHepr) 0GHpAOTh, KOJIM CIPOOYBaTH HPOIOHYBATH OJIOK ab0 BCTABKY TPAHCAKII 32
YMOB HEBU3HAYEHOCT1.

Kuaro4oBi ciioBa: piBHOMIpHA OTHOKY/IHOBa OE3ITyMHA, ye/Ib, MACIITAOOBAHA BIYIHICTD,
€KCIIOHEHITIAJIbHO-OITYKJI& BJIYYHICTh, MATPUYHA I'Pa, ONTUMAJbHICTE OCTAHHBOI'O MOMEHTY Yacy.
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