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PINN-BASED MACHINE LEARNING FOR MODELING
INTERNAL WAVES IN SEMI-INFINITE FLUIDS

This study investigates the application of Physics-Informed Neural Networks (PINNs) for modeling
wave processes at the interface between two incompressible fluids of differing densities. As a first step,
the linear formulation of the problem is considered, which admits an analytical solution based on a
spectral method involving Fourier decomposition of the initial perturbation. This solution serves as a
benchmark for testing and validating the accuracy of the PINN predictions.

The implementation is carried out in Python using specialized libraries such as TensorFlow, NumPy,
SciPy, and Matplotlib, which provide both efficient deep learning frameworks and tools for solving mathe-
matical physics problems numerically. The approach integrates artificial intelligence with domain-specific
knowledge in hydrodynamics, enabling the construction of interpretable and physically consistent mod-
els. Particular attention is given to the organization of the computational experiment, automation of
visualizations, and storage of intermediate results for further analysis. The PINN model includes a loss
function that encodes the governing equations and boundary conditions, and the training is conducted
on randomly sampled points across the spatio-temporal domain. The influence of network architecture
and training parameters on solution accuracy is examined. Visualization of loss function evolution
and predicted wave profiles provides insight into convergence behavior and physical plausibility of the
solutions.

A comparative analysis between the PINN-based and analytical solutions across different time in-
stances is presented, revealing phase shifts and amplitude deviations. The model demonstrates good
agreement at early times and a gradual accumulation of errors as time progresses—an expected feature
of this class of methods. The results confirm the feasibility of applying the PINN framework to linear
hydrodynamic problems, laying the groundwork for future extensions to weakly and strongly monlinear

regimes, including studies of wave stability and nonlinear wave dynamics.

Keywords: physically informed neural network (PINN), loss function, neural network testing, wave

profiles.

Introduction

Physics-informed neural networks (PINNs) rep-
resent a modern class of machine learning models
specifically designed to solve problems while re-
specting physical laws formulated as nonlinear dif-
ferential equations. In a seminal work, Raissi et al.
introduced the foundational PINN architecture ca-
pable of addressing both forward and inverse prob-
lems, enabling effective modeling in fields such as
hydrodynamics, quantum mechanics, and wave dy-
namics [1]. Subsequently, Lin and Chen proposed
a two-stage PINN training method that incorpo-
rates additional constraints on conserved physi-
cal quantities, significantly enhancing the accuracy
and generalization capability of the model in re-
constructing complex localized wave solutions, in-
cluding soliton molecules and their interactions [2].
Bhatnagar et al. demonstrated that PINNs can
be successfully applied to three-dimensional flow
and thermal processes with limited data, serving
as high-fidelity surrogate models for complex engi-
neering applications [3].
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In hydromechanics, the application of PINNs
gains particular importance due to the high cost
of experimental measurements and numerical sim-
ulations. Sharma et al. conducted a comprehen-
sive review highlighting the potential of physics-
informed machine learning methods to improve
prediction accuracy and robustness for turbulent
flows, as well as to replace resource-intensive nu-
merical models [4]. Buhendwa et al. employed
PINNSs to reconstruct velocity and pressure fields
in two-phase flow problems based on interface mo-
tion data, effectively addressing both forward and
inverse hydrodynamic problems [5].

Wave process modeling remains one of the
most actively developed fields of PINN applica-
tions. Pu et al. proposed an enhanced archi-
tecture with adaptive activation functions, which
enabled high-precision recovery of localized solu-
tions to the derivative nonlinear Schrédinger equa-
tion, including various soliton and solitary wave
types [6]. Wang and Yan applied a multi-level
PINN framework to discover parameters and re-
cover rogue wave solutions of the defocusing non-
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linear Schrodinger equation with time-dependent
potential, opening new avenues for solving inverse
problems with high sensitivity to initial conditions
[7]. Pan et al. demonstrated that deep neural net-
works could effectively reconstruct internal wave
amplitudes from optical satellite images by lever-
aging texture features and peak-to-peak distance
analysis, achieving accuracy around 3.6% com-
pared to in-situ measurements [8]. Liu et al. in-
troduced the hybrid LWT-PINN model, combining
classical linear wave theory with PINNs to provide
phase-resolved wave prediction in real time, out-
performing traditional linear models in both accu-
racy and forecast duration [9].

In seismic modeling, PINNs address chal-
lenges related to wave propagation in semi-infinite
and geologically complex domains where proper
boundary condition handling and computational
scalability are critical. Ren et al. developed Seis-
micNet, a PINN model integrating soft bound-
ary condition enforcement and sequential tempo-
ral training, enabling efficient seismic wave simu-
lation under various geological parameter distribu-
tions [10]. To overcome spectral bias in modeling
multifrequency seismic wavefields governed by the
Helmholtz equation, Song and Wang proposed the
Fourier Feature PINN—a model with embedded
Fourier features that demonstrates high efficiency
and accuracy when processing multiple frequencies
simultaneously [11].

It is therefore worthwhile to investigate the ap-
plicability of PINNs for solving weakly nonlinear
problems in hydromechanics and wave processes
occurring in heterogeneous fluids, which is the fo-
cus of the present study.

Problem Statement and Preliminary
Results

Physics-informed neural networks (PINNs) will
be employed to solve the nonlinear problem of in-
terfacial waves between two incompressible, ideal
fluids with surface tension. The main objective is
to utilize this classical hydromechanical problem
to test the PINN methodology, assess its effective-
ness, and demonstrate its applicability to solving
complex physical problems. The goal is to deter-
mine the wave profile n(z,t) and the velocity po-
tential fields ¢4 (z, 2, t) in the lower fluid half-space
Q1 and ¢o(z, 2,t) in the upper half-space 5. A po-
tential flow is considered, where ¢ and ¢, satisfy
Laplace’s equations in their respective domains.

The interfacial boundary is given by z =
= amn(x,t), where « is a parameter scaling non-
linear effects. On this boundary, kinematic condi-
tions relate the surface motion to the fluid veloc-
ity, and a dynamic condition describes the pressure

balance accounting for gravity, kinetic energy, and
surface tension 7. All nonlinear terms, including
those associated with surface tension, are scaled by
«. At remote boundaries along the z-direction (as
z — £00), fluid velocities decay to zero. The ini-
tial wave profile is prescribed at ¢ = 0 as n(z,0) =
~ f().

The mathematical formulation of the problem
(fori=1,2):

¢i,x:r + ¢i,zz =0

with the kinematic boundary conditions on the in-
terface z = an(z,t)

Nt + Ol(,bi,xn,z = ¢i,zv (2)

and the dynamic boundary condition on the inter-
face z = an(x,t)

b1t — pdas + (1 — p)gn + g (1. +01.) (3

in Qi, (].)

~ G (Bt 63.) — T =0,
1+ (anz) )
with decay conditions at infinity
Gix—0, ¢i,—0 asz— Foo, 4)
and the initial condition
n(x,0) = f(x). ()

In the linear regime, an analytical solution ex-
ists and is detailed, for example, in [12]. Specifi-
cally, the interface deviation 7, (z,t) in the linear
approximation (a« — 0) can be represented as a
sum of right- and left-propagating waves,

nlin(xat) = nltn<x7t) + nl:n(wﬂt)a

each expressed through Fourier integrals of the ini-
tial displacement f(z):

+oo
it =5 [ (ark)eostho 7w

—by(k)sin(kx F w(k)t)) dk, (6)
where

+oo
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and the dispersion relation is

k(1 —p+Tk?)

w(k) = 15, .

The following sections describe the implemen-
tation of PINN modeling, with the analytical solu-
tion (6) used as a reference to verify and validate
the correctness of the PINN approach.
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Implementation of PINN Modeling

Model Initialization and PINN Archi-
tecture. To solve the wave dynamics problem
(1)—-(5), a PINN was implemented using Python.
The setup relies on standard libraries: TensorFlow
(for constructing and training neural networks),
NumPy (for numerical operations), Matplotlib
(for visualization), and os (for file system in-
teraction). Automatic differentiation is enabled
through TensorFlow’s eager execution mode.

The architecture includes three fully connected
neural networks, each responsible for approximat-
ing one of the key physical quantities: the inter-
facial displacement 7(x,t) and the velocity poten-
tials ¢1(z, z,t) and ¢a(x, 2,t) in the lower and up-
per fluid domains, respectively. The networks use
tanh as activation functions and consist of multiple
hidden layers with configurable depth and width.

The initial profile of the interface is modeled as
a Gaussian wave packet characterized by its am-
plitude, width, and position. Physical parameters
such as fluid density ratio, surface tension, and do-
main size are defined according to the linear regime
considered in the first stage of the experiment.

Loss Function Implementation. The loss
function, which drives the training of the PINN
model, is constructed to reflect how well the neu-
ral network approximations satisfy the governing
physical equations, initial condition, and boundary
conditions. Contributions from different regions
of the domain—including the fluid bulk, interface,
boundaries at infinity, and initial time—are eval-
uated using randomly sampled collocation points
generated via tf.random.uniform.

Each component of the loss corresponds to a
different aspect of the problem: satisfaction of
Laplace’s equation in each fluid layer, enforcement
of the kinematic and dynamic boundary conditions
at the interface, decay behavior at spatial infinity,
and adherence to the initial condition. Derivatives
involved in these conditions are computed using
TensorFlow’s GradientTape mechanism for auto-
matic differentiation.

To ensure symmetry in the predicted solu-
tions—expected due to the symmetric form of the
initial condition—a dedicated term is added to pe-
nalize asymmetry with respect to the spatial vari-
able. This improves both accuracy and the physi-
cal consistency of the resulting wave profiles.

All components are combined into a weighted
sum, which forms the total loss minimized dur-
ing training. Monitoring of individual loss terms
is used to evaluate convergence and guide poten-
tial refinements to the network design or training
strategy.

Training and Loading of Network Pa-
rameters. Training of the neural networks is car-
ried out iteratively using the Adam optimizer with a
fixed learning rate. At the start, the system checks
for previously saved model weights; if such files
are found, training is skipped and the weights are
loaded. Otherwise, training begins from scratch.

The process uses a fixed number of training
epochs and a predefined number of collocation
points per step. Automatic differentiation is per-
formed via TensorFlow’s GradientTape, which
computes gradients of the total loss with respect
to the model parameters. These gradients are then
used to update the weights during optimization.

Training progress is monitored in real time
through periodic plotting of the predicted wave
profile n(z,t) at selected time snapshots, along
with printing loss values to the console. All key
metrics, including the evolution of total and indi-
vidual loss components, as well as the learning rate
history, are stored for later analysis.

After training, the learned weights are saved
to disk, enabling reuse without retraining. To
improve convergence and training stability, stan-
dard learning rate scheduling strategies such as
ExponentialDecay or ReduceLROnPlateau may
be applied, allowing adaptive adjustment of the
learning rate based on loss evolution.

Convergence Analysis and Visualization
of PINN Modeling Results. The convergence
behavior of the model is analyzed through visual-
ization of loss histories and predicted wave fields.
If available, stored data on loss values from the
training process is used to generate plots showing
the evolution of individual loss terms and the total
loss, typically on a logarithmic scale. These plots
help evaluate the relative contributions of physical
constraints and the model’s convergence behavior.

Upon completion of training or loading of pre-
trained weights, predicted solutions are visualized
and saved. This includes interface displacement
profiles n(x,t) at a series of fixed time points,
which are plotted together and compared with the
initial condition to assess accuracy and physical
consistency.

A three-dimensional plot of n(z,t) provides a
global view of wave packet dynamics over space
and time. Additionally, contour plots of the veloc-
ity potentials ¢1(x, z,t) and ¢a(x, z,t) at a given
time are generated to examine flow structure in
each fluid layer, with the interface between them
clearly marked.

Below, several visualizations are presented to
demonstrate the performance of the program, ob-
tained using a PINN model with architecture
L7 N25, consisting of 7 layers with 25 neurons
each.
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Figure 1 presents the dynamics of the loss func-
tion during the training process. The vertical axes
of both plots are shown on a logarithmic scale,
which enhances the visualization of changes in the
loss values, particularly in the early stages of train-
ing. It can be observed that during the initial
epochs, the total loss (Figure 1b) and its compo-
nents (Figure 1la) decrease rapidly, followed by a
phase of slower reduction accompanied by oscilla-
tions—a typical pattern for neural network opti-
mization.

(a)

Figure 1. Loss function history during training: (a)
individual components; (b) total loss.

(a) (b)

Viave Profiles nix, ) for Different Time Moments (PINN)

sampliae o)

(©)

Figure 2. Wave profiles n(z,t) at t = 0,1,2, 3,4, 5:
(a) after 2000 epochs; (b) after 4000 epochs; (c) final
predictions after training.

Figures 2a and 2b illustrate the evolution of
wave profiles n(z, t) at intermediate training stages
(epochs 2000 and 4000). Dashed lines repre-
sent the network predictions, while the bold black
line shows the true initial condition. These plots
demonstrate the gradual formation and propaga-
tion of the wave packet, converging toward physi-
cally consistent behavior. Figure 2c shows the re-
sults obtained after the final stage of training for
the PINN architecture L7 N25. The plot illus-
trates the temporal evolution of the wave profile

n(z,t) at several discrete time moments. The re-
sults demonstrate that the trained neural network
is capable of capturing the propagation and disper-
sion of the internal wave packet, with visible agree-
ment to the expected physical behavior across the
time axis.

Figure 3 presents a three-dimensional visualiza-
tion of the final trained solution for the wave profile
n(x,t) over the full spatiotemporal domain (z,t).
The 3D surface plot highlights the dynamic evolu-
tion of internal waves and clearly reveals the wave
packet’s trajectory, amplitude variations, and dis-
persive spreading as learned by the PINN model
after complete training.

Wave Profile (x,t) (3D)

Amplitude ()

Figure 3. Three-dimensional visualization of the
wave profile n(z, t) over the entire space-time domain.

Finally, Figure 4 illustrates the distribution of
velocity potentials ¢ (z, z,t) and ¢2(z, z,t) in the
two fluid layers at a fixed time moment. The
dashed line marks the interface between fluids,
allowing assessment of the solution’s continuity
across the boundary.

Potentials ¢, and ¢, at t = 2.5

Interface (z=0)

Depth (2)
Potential

0.0 ¥ . i 10.0
Space (x)

Figure 4. Velocity potentials ¢1 and ¢2 in the (z, 2)
plane at time ¢ = 2.5. The dashed line indicates the
fluid interface.
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PINN Model Testing

Analytical Solution and Its Computa-
tional Implementation. The analytical solution
described by equation (6) was computed using di-
rect numerical integration, rather than relying on
fast Fourier transform routines. To evaluate the
Fourier coefficients explicitly, the quad function
from the scipy.integrate module was employed.
This method ensures high-accuracy evaluation of
the integrals defining the spectral decomposition
of the initial perturbation.

The calculation involves integrating sine and
cosine transforms of the initial profile over a finite
spatial domain. The integration range, resolution
in wave number space, and the density of sampled
points are chosen to capture the essential features
of the wave spectrum and accurately reflect disper-
sive dynamics. Integration precision is controlled
through parameters specifying the allowed subdi-
vision of intervals, which is important for resolving
localized features of the initial condition.

Analysis and Comparison of Wave Pro-
files. To compare the results of the PINN model
with the analytical solution, a custom Python
script was used. The script loads precomputed
data and generates visualizations to assess mod-
eling accuracy and evaluate different network con-
figurations.

The analysis includes two types of plots. The
first presents individual comparisons at selected
time instances, highlighting the evolution of the
wave profile as predicted by the PINN and by the
analytical solution. The second provides a global
view, combining all profiles on a single graph.
Here, color is used to represent time, while differ-
ent line styles distinguish between analytical and
PINN-based results. This visualization strategy
enables clear identification of phase shifts, ampli-
tude discrepancies, error accumulation over time.

To illustrate the program’s capabilities in com-
parison and visualization, sample plots are pro-
vided below.

Figure 5 shows a detailed comparison of wave
profiles n(x,t) for the analytical solution (solid
black line) and the PINN model with architecture
L10 N50 with 10 layers, each containing 50 neu-
rons, (dashed blue line) at six different time points
(t =0.0 to t = 5.0). Each subplot corresponds to
a specific moment in time, allowing visual inspec-
tion of discrepancies or agreement between solu-
tions during wave packet evolution. At early times
(t = 0.0, t = 1.0), the predictions closely match
the analytical solution. However, as time pro-
gresses, small deviations emerge, visible in phase
shifts and amplitude differences, especially in the
wave packet tails.

Comparison of Analytical vs. Multiple PINN Architectures Wave Profiles

Figure 5. Comparison between analytical solution
and PINN predictions (L10_N50) for wave profiles
n(z,t) at different time points.

Figure 6 presents a combined plot where all
wave profiles for both the analytical solution (solid
lines) and the PINN model (dashed lines) are dis-
played together. Line colors encode time, enabling
tracking of temporal evolution. Good initial agree-
ment is observed, which gradually deteriorates over
time, indicating an accumulation of errors in the
PINN model compared to the analytical solution.
Differences in phase velocity and dispersion be-
come more pronounced at later stages.

/N

Figure 6. Wave profile evolution at different time
points: the analytical solution and PINN (L10 N50)
with 10 layers, each containing 50 neurons.

The obtained testing results demonstrate that
the PINN model accurately reproduces the wave
dynamics at early stages; however, error accumu-
lation becomes noticeable over time, highlighting
the need for further tuning of the architecture and
training parameters.

Conclusion and Future Research Directions

The results of the first stage of experiments on
modeling the linear interfacial wave problem be-
tween two fluid layers using PINNs demonstrate
satisfactory agreement between the obtained nu-
merical solutions and the analytical results. This
confirms the fundamental applicability and effec-
tiveness of the PINN method for problems of this
class.
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However, in order to improve the model’s ac-
curacy and robustness, further training is neces-
sary, along with an investigation of the impact of
various learning rate optimization strategies (e.g.,
ExponentialDecay or ReduceLROnPlateau) and
modifications of the neural network architecture.

The next key stage of this research involves
transitioning to the modeling of the nonlinear ver-
sion of the problem. This will require adapting
the PINN model to incorporate the full nonlinear
terms in the governing equations and boundary

conditions, which poses a more complex and phys-
ically rich challenge. Investigating nonlinear wave
dynamics will allow for a deeper exploration of
phenomena such as soliton formation and wave
packet instabilities, as well as an evaluation of the
potential of PINNs in solving problems that lack
simple analytical solutions.
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Aspamenxo O. B., Komnaw C. B., Capana M. II.

MAHIINMHHE HABYAHHA HA OCHOBI PINN JIJI4
MOAEJIOBAHHA BHYTPIIITHIX XBUJIb ¥
HAIIIBHECKIHYEHHUX PIZIMHAX

¥ pobori posrisizaerbes 3acrocyBans dbizudno indopmoBanux Heliponnux Mepex (Physics-Informed
Neural Networks, PINNS) 1gst MozesnioBaHsl XBUIbOBUX IIPOIECIB Ha MEXKI HOMLLY JABOX HECTUCIUBUX
pimuH 3 pizHoto ryctunoro. Ha reprroMy eTtarri q0C/TiI2KeHHsI BUBYAETHCS JiHilHa TOCTAHOBKA 3311, SKa,
JIOIIyCKAE aHAJITHYHUIN PO3B’SI30K Ha OCHOBI CIIEKTPAJIBHOIO METO/Y 3 PO3KJIAI0M [TOYATKOBOrO 30ypeH-
us y psig @yp’e. Lle po3s’sizanis BAKOPUCTOBYETHCS JJIsi TECTYBAHHS Ta BAJII ATl TOYHOCTI IepeidadeHnb
momeni PINN.

IIporpamuy peastizarito Bukonano MoBoio Python i3 Bukopucrtanasm creriagizoBanux 0ib6sioTex
TensorFlow, NumPy, SciPy Ta Matplotlib, mo 3abe3neuyrors sik edeKTUBHE CTBOPEHHS apXiTEKTyp
TIMOVHHOTO HABYAHHS, TaK 1 YHWCEJbHE DO3B’si3aHHS 3a/ad MATEMATHIHO! (Di3WKH. 3aIrporOHOBAHUMN
MiAXi TOEMHY€E MOYKJIUBOCTI MTYYHOTO 1HTEJEKTY 3 TaJy3€BUMHU 3HAHHIME B TaIy3i TiApoJIMHAMIKM,
o Jlae 3Mory OyayBaru inTeprperoBani Ta ¢izudaao obrpyrToBani Mozeai. OcobauBy yBary mpuiiie-
HO Oprasizarllil eKCIepuMeHTy, aBTOMaTu3allil Bizyasizaril Ta 30epeKeHHI0 TPOMIKHIAX Pe3yJIbTaTiB JIJIsd
nogasboro anatisy. Peasizaniss PINN Bkitouae dopMmysioBanHst (yHKINT BTpaT, sika Bimobpazkae di-
3UYHI PIBHSIHHS Ta TPAHUYHI YMOBHU, a HABYAHHS HEHpOMEpeXKi 3iICHIOETbCS Ha BUIIAIKOBiil BuOIpIT
TOYOK y IPOCTOPOBO-4acoBiit obsracti. [IpoanasizoBano BIUIMB apxiTeKTypu MOZENIi Ta mapaMerpiB Ha-
BUYAHHS HA TOYHICTH pO3B’a3amus. Bisyasizariis icropil BTpat i nepenbdadernnx mpodiiiB XBUIb JT03BOJISIE
orinnT! 301KHICTD Ta PI3UIHY aI€KBATHICTH OTPUMAHOTO PO3B’I3aHHSI.

Hagemeno nopiBusaus pesyiabrariB MomemoBantas PINN 3 anangituanuM po3s’s3koM y pi3Hi MOMEH-
TH 9acy, BUSBJIEHO 0cOOIUBOCTI (ha30BUX 1 aMILIITY IHUX BiaxmieHb. 3ahikcoBaHO BUCOKY BiJIITOBIHICTH
PO3B’sI3KiB Ha MOYATKOBUX €Talax i MOCTYIMOBE HAKONMUYIEHHS MOXUOOK y 1aci, M0 € TUTTOBUM JJIsT TI0/Ti-
6ruX Mozeseil. OTpuMaHi pe3yJsibTaTh MiATBEPIKYIOTh NpuaaTHicTh migaxoay PINN s 3amaq siHiitHOT
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rizponuHamMikm, 3aK/IaaI091 MAIPYHTS JJIs MOJAJIBINOrO MOMIMPEHHs Ha CJIA0KO- Ta CHJILHOHE IHINH]
PEeXUMU, JIOCJIiPKEHHS CTIMKOCTI Ta JUHAMIKNA HEJTIHIMHUX XBUJIb.

Kurouosi cioBa: disuuno indopmosana ueiiponna mepexka (PINN), dyukuis Brpar, TecryBaHHs
HelpoMepeKi, TpodiTi XBUIb.
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