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ANALYSIS OF WAVE PROPAGATION CONDITIONS IN A
TWO-LAYER HYDRODYNAMIC SYSTEM WITH A FREE
SURFACE

The study examines the problem of the propagation of internal and surface waves in a two-layer
hydrodynamic system "a half-space - a layer - a layer with a free surface”. A mathematical model in
a linear approximation is presented. The research problem is formulated under the assumption that
the fluids are ideal and incompressible. The mathematical formulation of the problem is given in a
dimensionless form. Expressions for the deviation of the contact interface n1(x,t) and the free surface
na2(x,t) in the form of traveling waves are found. Expressions for the potentials ¢1(x, z,t) and ¢o(z, 2,t),
whose gradients describe the propagation velocities in the layers 1 and Qs respectively, are obtained
in an analytical form. A dispersion relation that connects the wave number and the wave propagation
frequency is derived. The roots of the dispersion relation, which are the frequencies of wave propagation
on the contact interface and on the free surface, are found. An analysis of the roots of the dispersion
relation depending on the geometric and physical parameters of the system is carried out. In particular,
the dependence of the wave propagation frequencies on the wave number without considering surface
tension is analyzed.

The conducted research indicates that in the absence of surface tension (Ty = To = 0), the density
ratio p acts as a defining parameter that governs both the quantitative and qualitative characteristics of
the wave modes in the considered system. A transition from the classical state of the system with clearly
separated fast surface and slow internal modes to a regime of their inversion was identified, which is a
significant result for a deeper understanding of the dynamics of strongly stratified fluids.

The consideration of surface tension forces reveals a complex interaction between the effects of density
stratification and capillarity. Capillary forces lead to a substantial increase in wave frequencies and can
become a dominant factor for internal modes, effectively neutralizing the influence of density changes.
At the same time, it has been established that the density ratio p retains its role as the key parameter that
determines the qualitative structure of the modes, including the possibility of their complete inversion
under conditions of strong fluid stratification.
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Introduction

The investigation of wave propagation condi-
tions in stratified hydrodynamic systems is based
on the analysis of the dispersion relation. Such
studies are an important component of modern re-
search into wave motions in fluids.

In article [1] investigates the problem of wave
propagation in a hydrodynamic system consisting
of a layer with a rigid bottom and a layer with a
free surface. The roots of the dispersion equation
are analyzed for various values of the density ra-
tio. In the limiting cases, the correspondence of
the obtained roots to previously known results is
shown. The existence of two linearly independent
solutions for the first-order approximation problem
is demonstrated, and the shapes of the free surface
and the interface are also investigated.

In [2] models nonlinear internal waves in an
ocean of great depth. The ocean is assumed to
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be composed of three homogeneous fluid layers
of different densities in a stable stratified config-
uration. Based on the Ablowitz-Fokas-Musslimani
formulation for irrotational flows, strongly nonlin-
ear and weakly nonlinear models are developed
for the "shallow-shallow-deep" and "deep-shallow-
deep" scenarios. Internal solitary waves are com-
puted using numerical iteration schemes, and their
global bifurcation diagrams are obtained by a nu-
merical continuation method and compared for
different models. For the "shallow-shallow-deep"
case, both mode-1 and mode-2 internal solitary
waves can be found, and on the mode-2 branch, a
pulse broadening phenomenon resulting in conju-
gate flows is observed. While in the "deep-shallow-
deep" situation, only mode-2 solitary waves can be
obtained. The existence and stability of mode-2 in-
ternal solitary waves are confirmed by solving the
primitive equations based on the MITgcm model.

In [3] investigates the weakly nonlinear prob-
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lem of internal wave packet propagation in a “half-
space — layer — layer with a rigid lid” system. Based
on this problem, three linear problems are con-
structed for the scale components of the velocity
potentials and the displacements of the interfaces.
The conditions for wave propagation in the first
approximation are established for different density
ratios in the hydrodynamic system, and the de-
pendences of possible frequencies on the top layer
thickness and the wave number are analyzed. The
influence of the presence of surface tension at the
interfaces is investigated.

Effects of surface tension reduction on wind-
wave growth are investigated using direct nu-
merical simulations of air-water two-phase turbu-
lent flows [4]. The incompressible Navier-Stokes
equations for the air and water sides are solved
using an arbitrary Lagrangian-Eulerian method
with boundary-fitted moving grids. The growth
of finite-amplitude, non-breaking gravity-capillary
waves, with a wavelength of less than 0.07 m, is
simulated for two cases of different surface ten-
sions under a low wind speed condition of several
meters per second. The results show that the sig-
nificant wave height for the smaller surface tension
case increases faster than for the larger surface ten-
sion case. Analysis of energy fluxes for gravita-
tional and capillary wave scales shows that when
the surface tension is reduced, the energy transfer
from the significant gravity waves to the capillary
waves decreases, and the significant waves accu-
mulate more energy supplied by the wind. This
results in faster wave growth for the smaller sur-
face tension case. To support this conjecture, the
effect of surface tension is compared with labora-
tory experiments in a small wind-wave tank.

In [5] the evolution of a wave-like front per-
turbed by space-correlated disorder was studied.
In addition, the generic solution for the field
mean-value was presented as a series expansion
in Terwiel’s cumulant operators. This infinite se-
ries truncates due to the algebra of 'naked’ Ter-
wiel’s cumulants when these cumulants are asso-
ciated with a space exponential-correlated sym-
metric binary disorder. An equivalent approach
is applied to study the dispersion relation for
one-dimensional surface gravity waves propagat-
ing over an irregular bottom. The theory is based
on the study of the mean value of plane-wave-like
Fourier modes for the propagation and damping of
surface waves on a random bottom.

In article [6] investigated the problem of wave
propagation in a three-layer hydrodynamic system
described as ’a layer with a rigid bottom—a layer—a
layer with a rigid lid’. For the first approximation,
the dispersion relation and its two pairs of roots are
obtained. Expressions for the amplitude ratios of

the interface displacements, corresponding to the
roots of the dispersion equation, are derived. The
dependences of these amplitude ratios on various
physical parameters are graphically illustrated and
analyzed.

Problem statement

The problem of the propagation of two-
dimensional waves at the interface (internal waves)
and on the free surface (surface waves) is investi-
gated within a hydrodynamic system described as
"half-space - layer with a free surface".

2t (x1)
AN hf N N\
Q\/ N L ool

19
=
0
=

)
)

 (

Figure 1. Problem statement.

The lower layer, O = {(x,2) : |z| < 00, —00 <
< z < 0}, has a density of p;, and the upper layer,
Qo = {(x,2) : |z| < 00,0 < z < ha}, has a density
of ps. The layers are separated by the interface
z = m(z,t), and the upper layer is bounded from
above by the free surface z = na(x,t). The forces
of surface tension at the interface, 77, and on the
free surface, Ts, are taken into account. The force
of gravity is directed perpendicular to the inter-
face in the negative z-direction, and the fluids are
considered to be incompressible (Fig.1).

Wave propagation velocities in the respective
domains are expressed in terms of the gradients of
the potentials ¢ in €1 and ¢ in Q5. The mathe-
matical formulation of the problem under study in
the linear approximation using dimensionless vari-
ables is presented below.
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where p = p1/po is the density ratio.

In the following section, the solutions of the lin-
ear approximation will be presented, and the de-
rived dispersion relation will be provided.

Solutions and the dispersion relation

For the mathematical formulation presented
above, solutions have been obtained in the form
of traveling waves. The displacements of the inter-
face and the free surface are found in the following
form:

m = Aexp(if + kz) + c.c.,

no = (W2p) H(Thk® — kp + k — w?) sinh(khy)—
—w?pcosh(khy)|Aexp(if + kz) + c.c.,

where A is the wave amplitude, k is the wave num-
ber, w is the wave frequency, 8 = kx — wt, and
c.c. denotes the complex conjugate of the preced-
ing term.

The expressions for the potentials are as fol-
lows:

= —%A exp(if + kz) + c.c.,

b2 = ——[(T1k® — kp + k — w?) cosh(kz)—

- kwp
—w?psinh(kz)] A exp(if) + c.c.

Based on the solutions of the linear approxi-
mation, a dispersion relation that relates the wave
frequency and the wave number has been derived.
The dispersion relation is obtained in the following
form:

¢1 — co coth(khs)
ca — c1 coth(khy)’

w? = (k + Tgks)

where ¢; = T1k® — kp+ k — w?, c; = w?p.

The dispersion relation can be expressed in the
form of a biquadratic equation for the wave fre-
quency w as follows:

awt +bw? + ¢ =0,

where
a = p + coth(khs),

b= (1+ pcoth(khy))(Tok® + k)—
— coth(khy)(Thk® — kp + k),
c=—(Tok® + k) (Thk>® — kp + k).

The equation has two pairs of roots:

—b—Vb% — dac
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which represent the frequencies of waves that can
propagate in the system under study. In the fol-
lowing section, an analysis of these roots will be
performed as a function of the geometric and phys-
ical parameters of the system.

Analysis of the roots of the dispersion
relation

An analysis of the dispersion relations for two-
dimensional waves in the hydrodynamic system ’a
heavy fluid half-space — a layer of a lighter fluid
with a free surface’ is presented. The influence of
the density ratio p = pa/p1 on the frequency char-
acteristics of the waves w(k) was studied in the
absence of surface tension forces (T} = To = 0)
and for a fixed dimensionless thickness of the up-
per layer ho = 1. The dispersion relation for this
system has two branches of real solutions w(k), cor-
responding to two wave modes: wi (k) - blue color
and ws (k) - red color.

k

Figure 2. Dispersion curves without surface tension:
p = 0.9 - solid lines, p = 0.5 - dash lines, p = 0.1 - dot

lines.
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In the case where the fluid densities are close
(p = 0.9), the system exhibits classical behavior
(Fig.2). There are two clearly distinct modes: a
high-frequency mode, which corresponds to surface
(barotropic) waves, and a low-frequency mode,
which corresponds to internal (baroclinic) waves at
the contact interface. The restoring force for the
internal waves is the reduced gravity, proportional
to the density difference (1 — p), which explains
their significantly lower frequencies compared to
the surface waves.

With a decrease of the parameter p to 0.5, cor-
responding to an increase in the density contrast,
the frequency of the surface mode undergoes only
minor changes, confirming its weak sensitivity to
internal stratification. In contrast, the behavior of
the internal mode shows a non-trivial result. Its
values remain at practically the same level as in
the previous case. This indicates the presence of
complex inertial effects in the system’s dynamics,
which compensate for the increase in the restoring
force for the given parameters.

A further decrease of the density ratio to p =
= 0.1 leads to a qualitative restructuring of the
wave dynamics. The effect of mode swapping is
observed: the branch that previously corresponded
to the slow internal mode now becomes high-
frequency, and vice versa. In this regime, when the
upper layer becomes extremely light, the contact
interface between the fluids begins to behave like a
free surface for the heavy lower half-space, which
causes the high frequencies of the corresponding
mode. At the same time, the waves on the free
surface of the light layer itself become dynamically
slower.
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Figure 3. Dispersion curves with surface tension:
p = 0.9 - solid lines, p = 0.5 - dash lines, p = 0.1 - dot

lines.

In the case of close densities (p = 0.9), the pres-
ence of surface tension leads to a significant in-
crease in the frequencies of both modes compared
to the purely gravitational case. This transforms
the waves into gravity-capillary waves, where cap-
illary forces, proportional to k3, become a substan-
tial restoring force, especially for short waves. This
effect is most pronounced for the internal mode ws,
whose frequency increases severalfold, which indi-
cates the significant influence of the tension at the
interface (Fig.3).

When the parameter p is decreased to 0.5, cor-
responding to an increase in the density contrast,
the dispersion curves are nearly identical to the
previous case. Despite a five-fold increase in the
gravitational restoring force for the internal mode,
its frequency wsy remains practically unchanged.
This indicates that for the given parameters, the
capillary force at the interface becomes the domi-
nant factor in shaping the dynamics of the inter-
nal waves. The contribution from the gravitational
component, related to the density difference, be-
comes secondary; therefore, the change in p has
almost no effect on the final frequency.

A further decrease of the density ratio to p =
= 0.1 leads to a qualitative restructuring of the
wave dynamics, analogous to that observed in the
case without surface tension. Mode inversion oc-
curs, and the ws branch becomes high-frequency,
exceeding the w; branch. This fundamental phe-
nomenon, caused by strong stratification, persists
even in the presence of capillary effects. Surface
tension in this regime acts as an additional ampli-
fying factor, further increasing the frequencies of
both already-restructured modes. Thus, the waves
at the interface (w2) become the fastest in the sys-
tem, as their dynamics are determined by the com-
bined action of the full force of gravity and signif-
icant surface tension.

Conclusions

The analysis shows that, in the absence of sur-
face tension on both surfaces, the density ratio p is
a key parameter that controls not only the quanti-
tative but also the qualitative characteristics of the
wave modes in the system. A transition from the
classical configuration with clearly defined fast sur-
face and slow internal modes to a regime in which
their inversion occurs is demonstrated, which is an
important result for understanding the dynamics
of strongly stratified fluids.

In the presence of surface tension forces, the
analysis reveals a complex interaction between
density stratification and capillary effects. Surface
tension significantly increases the wave frequencies
and can become the dominant factor for internal
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modes, nullifying the effect of density changes. At ture of the modes, up to their complete inversion
the same time, the density ratio p remains the key — under strong fluid stratification.
parameter that determines the qualitative struc-
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AHAJII3 YMOB IIOIIINPEHHS XBIJIb ¥V JABOIIIAPOBIN
I'TIPOJIVMHAMIYHIN CUCTEMI 3 BIJILHOIO
ITOBEPXHEIO

Y mocaiazKeHHI PO3IVISHYTO 3a7a9y PO MOIMMUPEHHS BHYTPINTHIX Ta MOBEPXHEBUX XBUJIb B JIBOIIAPO-
Biif rizmpomuaamivHiil cucTeMi «miBIpOCTIp - map - map 3 BUILHOIO OBepxHEIO». [IpeacraBieno MmaTema-
TUYIHY MOJEIb B JiHiftnomy nabmmkenni. [Ipobmema mocaimkents chopMyIboBaHa B TPUITYIEHH], 110
piUHU € ieaJIbHUMU Ta HeCTUCAUBUMU. MaTemMaTudHa MOCTAHOBKA 33/1a4i HaBedeHa B 6€3p0o3MipHOMY
BUDJIAMl. 3HANIEHO BUPa3U I BIJAXWJICHHS IIOBEPXHI KOHTAKTY 7)1(x,t) Ta BijabHOI moBepxHI 7)2(X, t)
y Bursal 6ixkydnx xpuib. OTPUMAHO B aHAJITUIHOMY BUDJIZJ BUDA3W Jyis NOTEHIIAMB ¢1(x, 2, 1) Ta
o2z, 2, t), rPAJIIEHTH AKUX OIUCYIOTH MIBUIKOCTI IOMMPEHHs B mapax {11 Ta (o Binuosinmo. Buseneno
JUCIepciiiie CIiBBIIHOIIEHHS, sIKe MOB’SI3Y€ MiK CODOIO0 XBUJIHOBE UHCJIO Ta YaCTOTY HOITUPEHHS XBU-
Jii. 3HaIEHO KOPEeHi JUCIEPCIHOIO CIIBBIIHOIIEHHS, sIKi € 4acTOTaMU IOIINPEHHS XBU/Ib Ha ITOBEPXHI
KOHTaKTy Ta Ha BijbHi#l moBepxHi. [IpoBeieno anasiz KOpeHiB JUCIEPCIHHOTO CIIBBIIHOIICHHS B 3aJie-
JKHOCTI BiJl TEOMETPUYHUX Ta (PI3UYHUX ITapaMeTpiB cUCTeMHU. J0Kpema, IPOaHAJI30BAHO 3aJIeXKHICTh
9aCTOT MOIIMPEHHsS XBIUJIb BiJl XBIJIBOBOTO YMCJIa 0e3 ypaxyBaHHS ITOBEPXHEBOTO HATHITY.

ITpoBejiene OCHIKEHHS CBIIYUTD, IO B yMOBaX BiicyTHocTi nosepxuesoro Harary (17 = To = 0)
BIJTHOIIIEHHSI T'YCTUH p BUCTYIIA€ K BU3HAYAJIBHUN IapaMeTp, 0 Kepye K KIJIbKICHIMH, TaK 1 aKiICHIMUI
XapaKTEPUCTUKAMK XBUJIBOBUX MOJ, y PO3IJIAyBaHiil cucreMi. Byso BusiBiIeHO mrepexis Bij KJIaCHYHOIO
CTaHy CHCTEMU 3 YiTKO PO3JIJEHUMH IIBUIKOIO TOBEPXHEBOIO Ta IMOBIJIBLHOIO BHYTPINTHBOIO MOJAMU JIO
pexkuMy IXHBOI iHBEpCil, IO € CYTTEBUM PE3yJIbTATOM JJIs TJIHOIIOTO PO3YMIHHSI JUHAMIKK PiIuH i3
3HATHOIO CTpATH(IKAIIEO.

BpaxyBanus cuii MOBEPXHEBOI'O HATSATY PO3KPHUBAE KOMILIEKCHY B3a€MOJII0 MiK edeKTaMu CTPaTH-
dikaril 3a rycTuHoo Ta KamiasgpricTio. KamiaspHi cuiun mpusBOAATDb 0 iCTOTHOTO 3POCTAHHS XBUJIHO-
BHUX YaCTOT 1 MOXKYTh CTaTU JOMIHAHTHUM (PaKTOPOM JJIsi BHYTPINIHIX MO, (DAKTUIHO HEATPAJI3yIOUn
BILJIUB 3MiH I'yCTHHHU. Pa30M 3 TMM BCTaHOBJIEHO, IO BiIHOIIEHHS T'YCTUH p 30€pirae CBOIO POJIb KJIHOU0-
BOT'0 TIapaMeTpa, SKA BU3HAYAE SIKICHY CTPYKTYPY MO/, BKJIIOYHO 3 MOYKJIMBICTIO IXHBOI TOBHOI iHBEPCil
B YMOBaX CHUJIbHOI cTpaTudikartii piguHm.

Kitro4oBi cjioBa: momupeHHst XBUJ/Ib, JBOIIAPOBA CUCTEMA, JUCIIEPCiliHe CITiBBIIHOIIIEHHS.
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